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Abstract. Classification fusion combines multiple classifications of data into a 
single classification solution of greater accuracy. Feature extraction aims to re-
duce the computational cost of feature measurement, increase classifier effi-
ciency, and allow greater classification accuracy based on the process of deriv-
ing new features from the original features. This paper represents an approach 
for classifying students in order to predict their final grades based on features 
extracted from logged data in an educational web-based system. A combination 
of multiple classifiers leads to a significant improvement in classification per-
formance. By weighing feature vectors representing feature importance using a 
Genetic Algorithm (GA) we can optimize the prediction accuracy and obtain a 
marked improvement over raw classification. We further show that when the 
number of features is few, feature weighting and transformation into a new 
space works efficiently compared to the feature subset selection. This approach 
is easily adaptable to different types of courses, different population sizes, and 
allows for different features to be analyzed. 

1   Motivation 

Several web-based educational systems with different capabilities and approaches 
have been developed to deliver online education in an academic setting. In particular, 
Michigan State University (MSU) has pioneered some of these systems to provide an 
infrastructure for online instruction. The research presented here was performed on a 
part of the latest online educational system developed at MSU, the Learning Online 
Network with Computer-Assisted Personalized Approach (LON-CAPA).  LON-CAPA 
is involved with two kinds of large data sets: 1) educational resources such as web 
pages, demonstrations, simulations, and individualized problems designed for use on 
homework assignments, quizzes, and examinations; and 2) information about users 
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who create, modify, assess, or use these resources. In other words, we have two ever-
growing pools of data.  

This paper investigates methods for extracting useful and interesting patterns from 
these large databases of students using online educational resources and their re-
corded paths within the system. We aim to answer the following research questions: 
Can we find classes of students? In other words, do there exist groups of students 
who use these online resources in a similar way? If so, can we predict a class for any 
individual student? With this information, can we then help a student use the re-
sources better, based on the usage of the resource by other students in their groups? 

We hope to find similar patterns of use in the data gathered from LON-CAPA, and 
eventually make predictions as to the most-beneficial course of studies for each 
learner based on their past and present usage. The system could then make sugges-
tions to the learner as to how best to proceed. 

2    Background on using GAs for Feature Selection/Extraction 

Genetic Algorithms (GA) have been shown to be an effective tool to use in data 
analysis and pattern recognition [1], [2], [3]. An important aspect of GAs in a learn-
ing context is their use in pattern recognition.  There are two different approaches to 
applying GA in pattern recognition: 

 
1. Apply a GA directly as a classifier. Bandyopadhyay and Murthy in [4] applied GA 

to find the decision boundary in N dimensional feature space. 
 

2. Use a GA as an optimization tool for resetting the parameters in other classifiers. 
Most applications of GAs in pattern recognition optimize some parameters in the 
classification process. Many researchers have used GAs in feature selection [5], 
[6], [7], [8]. GAs have been applied to find an optimal set of feature weights that 
improve classification accuracy. First, a traditional feature extraction method such 
as Principal Component Analysis (PCA) is applied, and then a classifier such as k-
NN is used to calculate the fitness function for GA [9], [10]. Combination of classi-
fiers is another area that GAs have been used to optimize. Kuncheva and Jain in 
[11] used a GA for selecting the features as well as selecting the types of individual 
classifiers in their design of a Classifier Fusion System. GA is also used in select-
ing the prototypes in the case-based classification [12]. 
 
In this paper we focus on the second approach and use a GA to optimize a combi-

nation of classifiers. Our objective is to predict the students’ final grades based on 
their web-use features, which are extracted from the homework data. We design, 
implement, and evaluate a series of pattern classifiers with various parameters in 
order to compare their performance on a dataset from LON-CAPA. Error rates for the 
individual classifiers, their combination and the GA optimized combination are pre-
sented.  

Two approaches are proposed for the problem of feature extraction and selection. 
The filter model chooses features by heuristically determined “goodness/relevant” or 



knowledge, while the wrapper model does this by the feedback of classifier evalua-
tion, or experiment. Research has shown the wrapper model outperforms the filter 
model comparing the predictive power on unseen data [13]. We propose a wrapper 
model for feature extraction through setting different weights for features and getting 
feedback from ensembles of classifiers. 

3    Dataset and Class Labels 

As test data we selected the student and course data of a single LON-CAPA course, 
BS111 (Biological Sciences), which was held at MSU in spring semester 2003. This 
course integrated 24 homework sets, including 229 problems, all of which are online. 
All 402 students used LON-CAPA for this course. Some students who dropped the 
course in mid-semester have initial homework scores, but no final grades. After re-
moving those students, there remained 352 valid samples. The grade distribution of 
the students is shown in Fig 1. 
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Fig. 1. LON-CAPA: BS111 SS03, Grades distribution       

 
We can group the students regarding their final grades in several ways, three of 

which are: 
  

1. The nine possible labels can be the same as students’ grades, as shown in Table 1 
2. We can group them into three classes, “high” representing grades from 3.5 to 4.0, 

“middle” representing grades from 2.5 to 3, and “low” representing grades less 
than 2.5, as shown in Table 2. 

3. We can also categorize students with one of two class labels: “Passed” for grades 
above 2.0, and “Failed” for grades less than or equal to 2.0, as shown in Table 3. 

Table 2.  Selecting 3-Classes labels regarding to students’ grades in course BS111  SS03 

Class Grade # of Students  Percentage 
High Grade ≥ 3.5  84       23.86% 

Middle 2.0 < Grade < 3.5          103       29.26% 
Low Grade ≤ 2.0          165       46.88% 

Class Grade # of Std. Percentage 
1 0.0 37 10.51% 
2 0.5 2 0.57% 
3 1.0 21 5.97% 
4 1.5 52 14.77% 
5 2.0 53 15.06% 
6 2.5 51 14.49% 
7 3.0 52 14.77% 
8 3.5 32 9.09% 
9 4.0 52 14.77% 

Table 1.  Selecting 9-class labels  



Table 3.  selecting 2-Classes labels regarding to students’ grades in course BS111  SS03 

Class Grade # of Students Percentage 
Passed Grade > 2.0 187 53.13% 
Failed Grade ≤ 2.0 165 46.88% 

 
An essential step in performing classification is selecting the features used for clas-

sification. The BS111 course had an activity log with approximately 368 MB. After 
cleansing, we found 48 MB of useful data. We mined from these logged data 
1,689,656 transactions from which the following features were extracted: 

   
1. Total number of tries for doing homework. (Number of attempts before correct 

answer is derived) 
2. Total number of correct answers. (Success rate) 
3. Getting the problem correct on the first try vs. those with high number of tries. 

(Success at the first try) 
4. Getting the problem correct on the second try. 
5. Getting the problem correct between 3 and 9 tries. 
6. Getting the problem correct with high number of tries (10 or more tries). 
7. Total time that passed from the first attempt, until the correct solution was dem-

onstrated, regardless of the time spent logged in to the system. 
8. Total time spent on the problem regardless of whether they got the correct an-

swer or not.  

4    Classification ensembles 

Pattern recognition has a wide variety of applications in many different fields, such 
that it is not possible to come up with a single classifier that can give good results in 
all cases.  The optimal classifier in every case is highly dependent upon the problem 
domain. In practice, one might come across a case where no single classifier can 
achieve an acceptable level of accuracy. In such cases it would be better to pool the 
results of different classifiers to achieve the optimal accuracy. Every classifier oper-
ates well on different aspects of the training or test feature vector. As a result, assum-
ing appropriate conditions, combining multiple classifiers may improve classification 
performance when compared with any single classifier.  

The scope of this study is restricted to comparing some popular non-parametric 
pattern classifiers and a single parametric pattern classifier according to the error 
estimate. Four different classifiers using the LON-CAPA dataset are compared in this 
study. The classifiers used in this study include Quadratic Bayesian classifier, 1-
nearest neighbor (1-NN), k-nearest neighbor (k-NN), Parzen-window.†  These are 
some of the common classifiers used in most practical classification problems. After 
some preprocessing operations the optimal k=3 is chosen for kNN algorithm. To im-
prove classification performance, a fusion of classifiers is performed. 
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Normaliztion. Having assumed in Bayesian and Parzen-window classifiers that the 
features are normally distributed, it is necessary that the data for each feature be nor-
malized. This ensures that each feature has the same weight in the decision process. 
Assuming that the given data is Gaussian, this normalization is performed using the 
mean and standard deviation of the training data. In order to normalize the training 
data, it is necessary first to calculate the sample meanµ , and the standard deviation 
σ  of each feature in this dataset, and then normalize the data using the equation (1).                          

          
σ
µ−

= i
i

xx  (1) 

This ensures that each feature of the training dataset has a normal distribution with 
a mean of zero and a standard deviation of unity. In addition, the kNN method re-
quires normalization of all features into the same range.  

 

Combination of Multiple Classifiers. Clearly, the data here suggest that in combin-
ing multiple classifiers we can improve classifier performance. There are different 
ways one can think of combining classifiers: 

 

• The simplest way is to find the overall error rate of the classifiers and choose the 
one which has the least error rate on the given dataset. This is called an offline 
classification fusion. This may appear to be a classification fusion; however, in 
general, it has a better performance than individual classifiers.  

 
• The second method, which is called online classification fusion, uses all the clas-

sifiers followed by a vote. The class getting the maximum votes from the individ-
ual classifiers will be assigned to the test sample.  

 
Using the second method we show that classification fusion can achieve a signifi-

cant accuracy improvement in all three cases of 2-, 3-, and 9-Classes. A GA is em-
ployed to determine whether classification fusion performance can be maximized. 

5   GA-Optimized ensembles of classifications 
Our goal is to find a population of best weights for every feature vector, which 

minimize the classification error rate. The feature vector for our predictors are the set 
of eight variables for every student: Number of attempts before correct answer is 
derived, Success rate, Success at the first try, Success at the second try, Success with 
number of tries between three and nine, Success with high number of tries, the time at 
which the student got the problem correct relative to the due date, and total time spent 
on the problem. We randomly initialized a population of eight dimensional weight 
vectors with values between 0 and 1, corresponding to the feature vector and experi-
mented with different number of population sizes. We found good results using a 
population with 200 individuals. Real-valued populations may be initialized using the 
GA MATLAB Toolbox function crtrp. For example, to create a random population of 
200 individuals with eight variables each: we define boundaries on the variables in 
FieldD which is a matrix containing the boundaries of each variable of an individual.  

 

FieldD = [ 0 0 0 0 0 0 0 0 ;  % lower bound 
           1 1 1 1 1 1 1 1];  % upper bound 



We create an initial population with Chrom = crtrp(200, FieldD), So we have 
for example: 

Chrom = 0.23 0.17 0.95 0.38 0.06 0.26 0.31 0.52 
        0.35 0.09 0.43 0.64 0.20 0.54 0.43 0.90 
        0.50 0.10 0.09 0.65 0.68 0.46 0.29 0.67 
        0.21 0.29 0.89 0.48 0.63 0.81 0.05 0.12 

……………… 

We used the simple genetic algorithm (SGA), which is described by Goldberg in 
[14]. The SGA uses common GA operators to find a population of solutions which 
optimize the fitness values. We used the Stochastic Universal Sampling [14] as our 
selection method, mainly due to its popularity and functionality. A form of stochastic 
universal sampling is implemented by obtaining a cumulative sum of the fitness vec-
tor, FitnV, and generating N equally spaced numbers between 0 and sum(FitnV). 
Thus, only one random number is generated, all the others used being equally spaced 
from that point. The index of the individuals selected is determined by comparing the 
generated numbers with the cumulative sum vector. The probability of an individual 
being selected is then given by  

 
where f(xi) is the fitness of individual xi and F(xi) is the probability of that individual 
being selected. 

The operation of crossover is not necessarily performed on all strings in the popu-
lation. Instead, it is applied with a probability Px when the pairs are chosen for breed-
ing. We selected Px = 0.7 since this would preserve a reasonably high level of the 
original population. Intermediate recombination combines parent values using the 
following formula [15]: 

 

Offspring = parent1 + Alpha ×  (parent2 – parent1)    (3) 
 

where Alpha is a scaling factor chosen uniformly in the interval [-0.25, 1.25].  
A further genetic operator, mutation is applied to the new chromosomes, with a set 

probability Pm as the rate of mutation. Mutation causes the individual genetic repre-
sentation to be changed according to some probabilistic rule. Mutation is generally 
considered to be a background operator that ensures that the probability of searching 
a particular subspace of the problem space is never zero. This has the effect of tend-
ing to inhibit the possibility of converging to a local optimum, rather than the global 
optimum. We considered Pm = 1/800 as our mutation rate, due to its small value with 
respect to the population. The mutation of each variable is calculated as follows: 

 

Mutated Var = Var + MutMx ×  range ×  MutOpt(2) ×  delta    (4) 
 

where delta is an internal matrix which specifies the normalized mutation step size; 
MutMx is an internal mask table; and MutOpt specifies the mutation rate and its 
shrinkage during the run. 

During the reproduction phase, each individual is assigned a fitness value derived 
from its raw performance measure given by the objective function. This value is used 
in the selection to bias towards more fit individuals. Highly fit individuals, relative to 
the whole population, have a high probability of being selected for mating whereas 
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less fit individuals have a correspondingly low probability of being selected. The 
error rate is measured in each round of cross validation by dividing “the total number 
of misclassified examples” into “total number of test examples”. Therefore, our fit-
ness function measures the accuracy rate achieved by classification fusion and our 
objective would be to maximize this performance (minimize the error rate). 

6   Experimental Results 
Without using GA, the overall results of classification performance on our dataset for 
four classifiers and classification fusion are shown in the Table 4. Regarding individ-
ual classifiers, 1NN and kNN have the best performance in the case of 2-, 3-, and 9-
Classes, of approximately 62%, 50% and 35% accuracy, respectively. However, the 
classification fusion improved the classification accuracy significantly in all three 
cases. That is, it achieved 72% accuracy in the case of 2-Classes, 59% in the case of 
3-Classes, and 43% in the case of 9-Classes. 

Table 4. Comparing the average performance (%) of ten runs of classifiers on BS111 dataset 
for 2-, 3-, and 9-Classes, using 10-fold cross validation, without GA optimization 

Classifier 2-Classes 3-Classes 9-Classes 
Bayes 52.6 38.8 22.1 
1NN 62.1 45.3 29.0 
kNN 55.0 50.6 34.5 

Parzen 59.7 42.9 22.6 
Classification Fusion 72.2 58.8 43.1 

 
For GA optimization, we used 200 individuals (weight vectors) in our population, 

running the GA over 500 generations. We ran the program 10 times and obtained the 
averages, which are shown, in Table 5.   

Table 5. Comparing the classification fusion performance on BS111 dataset Using-GA and 
without-GA in the cases of 2-, 3-, and 9-Classes, 95% confidence interval 

Classifier 2-Classes 3-Classes 9-Classes 
Classification fusion of 4 Classifiers 

without GA optimization 71.19± 1.34 58.92± 1.36 42.94± 2.06 

GA Optimized Classification Fusion, 
Mean individual (not best value) 81.09± 2.42 70.13± 0.89 55.25± 1.03 

Improvement of Mean individual 9.82± 1.33 11.06± 1.84 12.71± 0.75 
 
The results in Table 5 represent the mean performance with a two-tailed t-test with 

a 95% confidence interval. For the improvement of GA over non-GA result, a P-
value indicating the probability of the Null-Hypothesis (There is no improvement) is 
also given, showing the significance of the GA optimization. All have p<0.001, indi-
cating significant improvement. Therefore, using GA, in all the cases, we got more 
than a 10% mean individual performance improvement and about 11 to 16% best 
individual performance improvement. Fig. 2 shows the results of one of the ten runs 



in the case of 2-Classes. The dotted line represents the population mean, and the solid 
line shows the best individual at each generation and the best value yielded by the run 
(Due to the space limitation, only two graphs are shown). 

 

 
Fig. 2.  GA-Optimized Combination of Multiple Classifiers’ (CMC) performance in the case of 

2- and 3-Classes, 200 weight vectors individuals, 500 Generations  

Finally, we can examine the individuals (weights) for features by which we ob-
tained the improved results. This feature weighting indicates the importance of each 
feature for making the required classification. In most cases the results are similar to 
Multiple Linear Regressions or some tree-based software (like CART) that use statis-
tical methods to measure feature importance. The GA feature weighting results, as 
shown in Table 6, state that the “Success with high number of tries” is the most im-
portant feature in all three cases. The “Total number of correct answers” feature is 
also important in some cases.  

Table 6. Relative Feature Importance%, Using GA weighting 

Feature 2-Classes 3-Classes 9-Classes 
Total Number of  Tries 18.9 17.8 10.7 
Total # of Correct  Answers 84.7 57.1 27.4 
# of Success at the First Try 14.4 55.2 34.2 
# of Success at the Second Try 16.5 25.9 22.0 
Got Correct with 3-9 Tries 21.2 38.8 11.1 
Got Correct with # of Tries ≥ 10 91.7 69.1 67.3 
Time  Spent to Solve the Problems 32.1 14.1 28.3 
Total Time Spent on the Problems 36.5 15.4 33.5 

7   Conclusions and Future Work 

We proposed a new approach to classifying student usage of web-based instruc-
tion. Four classifiers are used in grouping the students. A combination of multiple 
classifiers leads to a significant accuracy improvement in the 2-, 3- and 9-Class cases.  
Weighing the features and using a genetic algorithm to minimize the error rate im-
proves the prediction accuracy by at least 10% in the all three test cases. In cases 



where the number of features is low, feature weighting worked much better than fea-
ture selection. The successful optimization of student classification in all three cases 
demonstrates the merits of using the LON-CAPA data to predict the students’ final 
grades based on their features, which are extracted from the homework data. This 
approach is easily adaptable to different types of courses, different population sizes, 
and allows for different features to be analyzed. This work represents a rigorous ap-
plication of known classifiers as a means of analyzing and comparing use and per-
formance of students who have taken a technical course that was partially/completely 
administered via the web.  

In the present work, we propose an approach for predicting students’ performance 
based on extracting the average of feature values over all of the problems in a course. 
For future work, we plan to implement such an optimized assessment tool for every 
student on any particular problem. Therefore, we can track students’ behaviors on a 
particular problem over several semesters. 
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