

DATA MINING FOR A WEB-BASED

EDUCATIONAL SYSTEM

By

Behrouz Minaei-Bidgoli

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Department of Computer Science and Engineering

2004

ii

ABSTRACT

DATA MINING FOR A WEB-BASED EDUCATIONAL SYSTEM

By

Behrouz Minaei-Bidgoli

Web-based educational technologies allow educators to study how students learn

(descriptive studies) and which learning strategies are most effective (causal/predictive

studies). Since web-based educational systems are capable of collecting vast amounts of

student profile data, data mining and knowledge discovery techniques can be applied to

find interesting relationships between attributes of students, assessments, and the solution

strategies adopted by students. The focus of this dissertation is three-fold: 1) to introduce

an approach for predicting student performance; 2) to use clustering ensembles to build

an optimal framework for clustering web-based assessment resources; and 3) to propose a

framework for the discovery of interesting association rules within a web-based

educational system. Taken together and used within the online educational setting, the

value of these tasks lies in improving student performance and the effective design of the

online courses.

First, this research presents an approach to classifying student characteristics in order

to predict performance on assessments based on features extracted from logged data in a

web-based educational system. We show that a significant improvement in classification

performance is achieved by using a combination of multiple classifiers. Furthermore, by

“learning” an appropriate weighting of the features via a genetic algorithm (GA), we have

iii

successfully improved the accuracy of the combined classifier performance by another

10-12%. Such classification is the first step towards a “recommendation system” that will

provide valuable, individualized feedback to students.

Second, this project extends previous theoretical work regarding clustering

ensembles with the goal of creating an optimal framework for categorizing web-based

educational resources. We propose both non-adaptive and adaptive resampling schemes

for the integration of multiple clusterings (independent and dependent). Experimental

results show improved stability and accuracy for clustering structures obtained via

bootstrapping, subsampling, and adaptive techniques. These improvements offer insights

into specific associations within the data sets.

Finally, this study turns toward developing a technique for discovering interesting

associations between student attributes, problem attributes, and solution strategies. We

propose an algorithm for the discovery of “interesting” association rules within a web-

based educational system. The main focus is on mining interesting contrast rules, which

are sets of conjunctive rules describing interesting characteristics of different segments

within a population. In the context of web-based educational systems, contrast rules help

to identify attributes characterizing patterns of performance disparity between various

groups of students. We propose a general formulation of contrast rules as well as a

framework for finding such patterns. Examining these contrasts can improve the online

educational systems for both teachers and students – allowing for more accurate

assessment and more effective evaluation of the learning process.

iv

This dissertation is dedicated to:

my parents

my wife,

my son Mohsen,

my daughters Maryam and Zahra,

and to whoever serve the Truth for the Truth itself.

v

Acknowledgements

It is with much appreciation and gratitude that I thank the following individuals who

dedicated themselves to the successful completion of this dissertation. Dr. Bill Punch, my

major professor and advisor, maintained his post by my side from the inception to the

completion of this research project. He gave me guidance throughout my research.

Without his knowledge, patience, and support this dissertation would have not been

possible. The knowledge and friendship I gained from him will definitely influence the

rest of my life.

Other teachers have influenced my thinking and guided my work. I would also thank

professor Anil Jain. It was my honor to be a student in his pattern recognition classes,

which defined my interest in the field for many years to come. His professional guidance

has been a source of inspiration and vital in the completion of this work. I owe many

inspirational ideas to Dr. Pang-Ning Tan whose keen insights and valuable discussions

often gave me stimulating ideas in research. Though kept busy by his work, he is always

willing to share his time and knowledge with me. For these reasons, I wish he would have

been at Michigan State University when I began my research.

I also owe many thanks to Dr. Gerd Kortemeyer for his extraordinary support and

patience. His productive suggestions and our discussions contributed enormously to this

work. From the first time I stepped through the door of Lite Lab in the Division of

Science and Mathematics Education, until now, Gerd has allowed me freedom to explore

my own directions in research. He supported me materially and morally for many years,

and for that I am very grateful. I am grateful to Dr. Esfahanian for taking time to serve on

vi

the guidance committee and overseeing this work. I deeply appreciate his support and

insightful suggestions. His great organization of the graduate office in the Computer

Science Department helps advance graduate research. I have learned much from him,

both as a teacher and as a friend.

I am also grateful to my colleagues in the GARAGe Laboratory especially

Alexander Topchy, and all my friends in the LON-CAPA developers group: Helen Keefe,

Felicia Berryman, Stuart Raeburn, and Alexander Sakharuk. Discussion with our

colleagues Guy Albertelli (LON-CAPA head developer), Matthew Brian Hall, Dr. Edwin

Kashy, and Dr. Deborah Kashy were particularly useful. The discussions with them

substantially contributed to my work and broadened my knowledge.

I offer my special thanks to Steven Forbes Tuckey in the Writing Center for editing

this dissertation and his proof-reading. I am grateful to him for the countless hours of

constructive discussion and his informative revisions of my work. Last but not the least,

many thanks go to my wife, without her love, care, encouragement and continuous

support, I would not be who I am today. Above all, I thank God the Almighty, for

blessing me with the strength, health and will to prevail and finish this work.

I and my colleagues in LON-CAPA are thankful to the National Science Foundation

for grants supporting this work through the Information Technology Research (ITR

0085921) and the Assessment of Student Achievement (ASA 0243126) programs.

Support in earlier years of this project was also received from the Alfred P. Sloan and the

Andrew W. Mellon Foundations. We are grateful to our own institution, Michigan State

University and to its administrators for over a decade of encouragement and support.

vii

Table of Content

List of Tables ..xiii

List of Figures ... xvii

CHAPTER 1 INTRODUCTION ... 1

1.1 STATEMENT OF THE PROBLEM ... 1

1.2 DATA MINING .. 5

1.2.1 What is Data Mining? ... 6

1.2.2 Data Mining Methods.. 8

1.2.3 Predictive tasks.. 9

1.2.4 Descriptive tasks.. 9

1.2.5 Mixed tasks .. 10

1.3 ONLINE EDUCATION SYSTEMS ... 11

1.3.1 LON-CAPA, System Overview... 12

1.3.2 LON-CAPA Topology.. 12

1.3.3 Data Distribution in LON-CAPA .. 15

1.3.4 Resource Variation in LON-CAPA.. 16

1.3.5 LON-CAPA Strategy for Data Storage.. 17

1.3.6 Resource Evaluation in LON-CAPA ... 19

1.4 INTELLIGENT TUTORING SYSTEMS (ITSS) ... 20

1.4.1 Learning Enhancement in ITSs ... 22

1.4.2 Basic Architecture of an ITS.. 24

1.4.3 Learning and Cognition Issues for ITS Development and Use 27

1.5 SUMMARY .. 29

CHAPTER 2 BACKGROUND ON DATA MINING METHODS....................................... 30

viii

2.1 CLASSIFICATION AND PREDICTIVE MODELING.. 30

2.1.1 Bayesian Classifier.. 31

2.1.2 Decision tree-based method .. 33

2.1.2.1 What is the best feature for splitting? ... 34
2.1.2.1.1 Entropy impurity ... 35
2.1.2.1.2 Gini impurity ... 36
2.1.2.1.3 Twoing impurity.. 36

2.1.2.2 How to Avoid Overfitting... 37
2.1.2.2.1 Cross-Validation.. 37
2.1.2.2.2 Setting a threshold ... 37
2.1.2.2.3 Pruning .. 38

2.1.2.3 Drawbacks of decision tree ... 39

2.1.3 Neural Network Approach... 39

2.1.4 k-Nearest Neighbor (kNN) Decision Rule ... 42

2.1.5 Parzen Window classifier .. 43

2.2 CLUSTERING... 44

2.2.1 Partitional Methods... 45

2.2.1.1 k-mean Algorithm... 45
2.2.1.2 Graph Connectivity... 48
2.2.1.3 Nearest Neighbor Method... 49
2.2.1.4 Mixture density clustering .. 49
2.2.1.5 Mode Seeking ... 50
2.2.1.6 k-medoids.. 51

2.2.1.6.1 Partitioning Around Medoids (PAM).. 51
2.2.1.6.2 CLARA ... 52
2.2.1.6.3 CLARANS .. 52

2.2.1.7 Other partitional methods for large data sets... 53

2.2.2 Hierarchical Methods.. 54

2.2.2.1 Traditional Linkage Algorithms.. 55

ix

2.2.2.2 BIRCH.. 56
2.2.2.3 CURE.. 57

2.3 FEATURE SELECTION AND EXTRACTION.. 58

2.3.1 Minimizing the cost.. 59

2.3.2 Data Visualization ... 59

2.3.3 Dimensionality Reduction ... 59

2.3.4 Feature Selection... 60

2.3.5 Feature Extraction... 61

2.4 SUMMARY .. 63

CHAPTER 3 DATA REPRESENTATION & ASSESSMENT TOOLS IN LON-CAPA .. 64

3.1 DATA ACQUISITION AND EXTRACTING THE FEATURES... 64

3.1.1 Preprocessing student database .. 64

3.1.2 Preprocessing Activity Log.. 67

3.1.3 Extractable Features ... 68

3.2 FEEDBACK TO THE INSTRUCTOR FROM ONLINE HOMEWORK 69

3.2.1 Feedback tools... 69

3.2.2 Student Evaluation... 71

3.2.3 Conceptual Problems .. 77

3.2.4 Homework and Examination Problem Evaluation.. 83

3.3 SUMMARY .. 89

CHAPTER 4 PREDICTING STUDENT PERFORMANCE ... 91

4.1 DATA SET AND CLASS LABELS... 92

4.2 CLASSIFIERS ... 95

4.2.1 Non-tree based classifiers ... 95

4.2.1.1 Combination of Multiple Classifiers (CMC)... 96
4.2.1.2 Normalization ... 97

x

4.2.1.3 Comparing 2-fold and 10-fold Cross-Validation .. 98
4.2.1.4 Results, Error Estimation .. 100

4.2.2 Decision Tree-based software ... 105

4.2.2.1 C5.0 .. 106
4.2.2.2 CART.. 109
4.2.2.3 QUEST, CRUISE ... 113

4.2.3 Final Results without optimization .. 118

4.3 OPTIMIZING THE PREDICTION ACCURACY.. 119

4.3.1 Genetic Algorithms (GAs) ... 119

4.3.1.1 What is a Simple GA (SGA)? ... 120
4.3.1.2 Specific use of GAs in pattern classification... 120

4.3.2 Implementation of a GA to optimize the prediction accuracy 122

4.3.2.1 GA Operators.. 123
4.3.2.1.1 Recombination .. 123
4.3.2.1.2 Crossover... 124
4.3.2.1.3 Mutation .. 124

4.3.2.2 Fitness Function.. 125

4.3.3 Experimental Results of GA Optimization... 126

4.4 EXTENDING THE WORK TOWARD MORE LON-CAPA DATA SETS.......................... 131

4.4.1 Experimental Results ... 134

4.5 SUMMARY .. 138

CHAPTER 5 ENSEMBLES OF MULTIPLE CLUSTERINGS .. 140

5.1 INTRODUCTION... 141

5.2 TAXONOMY OF DIFFERENT APPROACHES... 144

5.3 NON-ADAPTIVE ALGORITHMS .. 148

5.3.1 Similarity-based algorithm.. 149

5.3.2 Algorithms based on categorical clustering.. 150

5.4 CONSENSUS FUNCTIONS ... 153

xi

5.4.1 Co-association based functions... 153

5.4.2 Quadratic Mutual Information Algorithm (QMI).. 153

5.4.3 Hypergraph partitioning ... 154

5.4.4 Voting approach .. 154

5.5 CRITICAL ISSUES IN RESAMPLING... 155

5.5.1 Variable number of samples.. 155

5.5.2 Repetitive data points (objects) ... 156

5.5.3 Similarity estimation.. 156

5.5.4 Missing labels.. 157

5.5.5 Re-labeling .. 157

5.5.6 Adaptation of the k-means algorithm .. 158

5.6 ADAPTIVE SAMPLING SCHEME ... 158

5.7 EXPERIMENTAL STUDY ON NON-ADAPTIVE APPROACHES 163

5.7.1 Data sets .. 163

5.7.2 The role of algorithm's parameters ... 165

5.7.3 The Role of Consensus Functions (Bootstrap algorithm).............................. 166

5.7.4 Effect of the Resampling method (Bootstrap vs. Subsampling)..................... 169

5.8 EMPIRICAL STUDY AND DISCUSSION OF ADAPTIVE APPROACH 174

5.9 CONCLUDING REMARKS ... 177

CHAPTER 6 ASSOCIATION ANALYSIS IN LON-CAPA... 152

6.1 INTRODUCTION... 152

6.2 BACKGROUND .. 155

6.2.1 Association analysis .. 155

6.2.2 Data mining for online education systems .. 157

6.2.3 Related work.. 158

xii

6.3 CONTRAST RULES .. 159

6.4 ALGORITHM.. 164

6.5 EXPERIMENTS... 166

6.5.1 Data model .. 167

6.5.2 Data sets .. 170

6.5.3 Results ... 171

6.5.3.1 Difference of confidences ... 173
6.5.3.2 Difference of Proportions ... 174
6.5.3.3 Chi-square... 174

6.6 CONCLUSION .. 175

CHAPTER 7 SUMMARY.. 177

7.1 SUMMARY OF THE WORK..177

7.1.1 Predicting Student Performance ..178

7.1.2 Clustering ensembles ...179

7.1.3 Interesting association rules ..180

7.2 FUTURE WORK..181

APPENDIX A: TREE CLASSIFIERS OUTPUT.. 182

C5.0 ...182

CART...187

QUEST ..195

CRUISE...201

BIBLIOGRAPHY.. 204

xiii

List of Tables

TABLE 1.1 DIFFERENT SPECIFIC ITSS AND THEIR AFFECTS ON LEARNING RATE................ 23

TABLE 3.1 A SAMPLE OF A STUDENT HOMEWORK RESULTS AND SUBMISSIONS 73

TABLE 3.2 STATISTICS TABLE INCLUDES GENERAL STATISTICS OF EVERY PROBLEM OF THE

COURSE .. 85

TABLE 3.3 ANALYSIS OF EXAMINATION PROBLEMS (N=393) DODIFF = DIFFICULTY INDEX

DODISC = DISCRIMINATION INDEX.. 87

TABLE 4.1. 9-CLASS LABELS REGARDING STUDENTS’ GRADES IN COURSE PHY183_ SS02

... 93

TABLE 4.2. 3-CLASS LABELS REGARDING STUDENTS’ GRADES IN COURSE PHY183 SS0293

TABLE 4.3. 2-CLASS LABELS REGARDING STUDENTS’ GRADES IN COURSE PHY183 SS02

... 93

TABLE 4.4 COMPARING ERROR RATE OF CLASSIFIERS WITH AND WITHOUT

NORMALIZATION IN THE CASE OF 3 CLASSES .. 98

TABLE 4.5 COMPARING ERROR RATE OF CLASSIFIERS 2-FOLD AND 10-FOLD CROSS-

VALIDATION IN THE CASE OF 3 CLASSES .. 100

TABLE 4.6: COMPARING THE PERFORMANCE OF CLASSIFIERS, IN ALL CASES: 2-CLASSES, 3-

CLASSESS, AND 9-CLASSES, USING 10-FOLD CROSS-VALIDATION IN ALL CASES..... 105

TABLE 4.7 VARIABLE (FEATURE) IMPORTANCE IN 2-CLASSES USING GINI CRITERION.. 111

TABLE 4.8 VARIABLE (FEATURE) IMPORTANCE IN 2-CLASSES, USING ENTROPY

CRITERION ... 111

xiv

TABLE 4.9: COMPARING THE ERROR RATE IN CART, USING 10-FOLD CROSS-VALIDATION

IN LEARNING AND TESTING SET. ... 112

TABLE 4.10: COMPARING THE ERROR RATE IN CART, USING LEAVE-ONE-OUT METHOD IN

LEARNING AND TESTING TEST. ... 112

TABLE 4.11: COMPARING THE ERROR RATE OF ALL CLASSIFIERS ON PHY183 DATA SET IN

THE CASES OF 2-CLASSES, 3-CLASSES, AND 9-CLASSES, USING 10-FOLD CROSS-

VALIDATION, WITHOUT OPTIMIZATION ... 118

TABLE 4.12. COMPARING THE CMC PERFORMANCE ON PHY183 DATA SET USING GA AND

WITHOUT GA IN THE CASES OF 2-CLASSES, 3-CLASSESS, AND 9-CLASSES, 95%

CONFIDENCE INTERVAL.. 128

TABLE 4.13. FEATURE IMPORTANCE IN 3-CLASSES USING ENTROPY CRITERION 130

TABLE 4.14. 14 OF LON-CAPA COURSES AT MSU ... 131

TABLE 4.15 CHARACTERISTICS OF 14 OF MSU COURSES, WHICH HELD BY LON-CAPA 132

TABLE 4.16 COMPARING THE AVERAGE PERFORMANCE% OF TEN RUNS OF CLASSIFIERS ON

THE GIVEN DATASETS USING 10-FOLD CROSS VALIDATION, WITHOUT GA 134

TABLE 4.17 COMPARING THE CLASSIFICATION FUSION PERFORMANCE ON GIVEN DATASETS,

WITHOUT-GA, USING-GA (MEAN INDIVIDUAL) AND IMPROVEMENT, 95% CONFIDENCE

INTERVAL... 135

TABLE 4.18 RELATIVE FEATURE IMPORTANCE%, USING GA WEIGHTING FOR BS111 2003

COURSE .. 137

TABLE 4.19 FEATURE IMPORTANCE FOR BS111 2003, USING DECISION-TREE SOFTWARE

CART, APPLYING GINI CRITERION .. 138

xv

TABLE 5.1 (A) DATA POINTS AND FEATURE VALUES, N ROWS AND D COLUMNS. EVERY ROW

OF THIS TABLE SHOWS A FEATURE VECTOR CORRESPONDING TO N POINTS. (B)

PARTITION LABELS FOR RESAMPLED DATA, N ROWS AND B COLUMNS. 151

TABLE 5.2 AN ILLUSTRATIVE EXAMPLE OF RE-LABELING DIFFICULTY INVOLVING FIVE

DATA POINTS AND FOUR DIFFERENT CLUSTERINGS OF FOUR BOOTSTRAP SAMPLES. THE

NUMBERS REPRESENT THE LABELS ASSIGNED TO THE OBJECTS AND THE “?” SHOWS THE

MISSING LABELS OF DATA POINTS IN THE BOOTSTRAPPED SAMPLES. 157

TABLE 5.3. CONSISTENT RE-LABELING OF 4 PARTITIONS OF 12 OBJECTS......................... 160

TABLE 5.4. A SUMMARY OF DATA SETS CHARACTERISTICS.. 163

TABLE 5.5 “STAR/GALAXY” DATA EXPERIMENTS. AVERAGE ERROR RATE (% OVER 10

RUNS) OF CLUSTERING COMBINATION USING RESAMPLING ALGORITHMS WITH

DIFFERENT NUMBER OF COMPONENTS IN COMBINATION B, RESOLUTIONS OF

COMPONENTS, K, AND TYPES OF CONSENSUS FUNCTIONS. .. 168

TABLE 5.6 THE AVERAGE ERROR RATE (%) OF CLASSICAL CLUSTERING ALGORITHMS. AN

AVERAGE OVER 100 INDEPENDENT RUNS IS REPORTED FOR THE K-MEANS ALGORITHMS

... 172

TABLE 5.7 SUMMARY OF THE BEST RESULTS OF BOOTSTRAP METHODS 172

TABLE 5.8 SUBSAMPLING METHODS: TRADE-OFF AMONG THE VALUES OF K, THE NUMBER

OF PARTITIONS B, AND THE SAMPLE SIZE, S. LAST COLUMN DENOTE THE PERCENTAGE

OF SAMPLE SIZE REGARDING THE ENTIRE DATA SET. (BOLD REPRESENTS MOST

OPTIMAL) ... 173

TABLE 6.1 A CONTINGENCY TABLE OF STUDENT SUCCESS VS. STUDY HABITS FOR AN

ONLINE COURSE ... 153

xvi

TABLE 6.2 A CONTINGENCY TABLE PROPORTIONAL TO TABLE 6.1 159

TABLE 6.3 A CONTINGENCY TABLE FOR THE BINARY CASE .. 159

TABLE 6.4 CHARACTERISTICS OF THREE MSU COURSES WHICH USED LON-CAPA IN FALL

SEMESTER 2003.. 171

TABLE 6.5 LBS_271 DATA SET, DIFFERENCE OF CONFIDENCES MEASURE...................... 173

TABLE 6.6 CEM_141 DATA SET, DIFFERENCE OF CONFIDENCES MEASURE..................... 173

TABLE 6.7 BS_111 DATA SET, DIFFERENCE OF PROPORTION MEASURE 174

TABLE 6.8 CEM_141 DATA SET, CHI-SQUARE MEASURE.. 174

TABLE 6.9 LBS_271 DATA SET, DIFFERENCE OF CONFIDENCES MEASURE....................... 175

xvii

List of Figures

FIGURE 1.1 STEPS OF THE KDD PROCESS (FAYYAD ET AL., 1996) 6

FIGURE 1.2 A SCHEMA OF DISTRIBUTED DATA IN LON-CAPA .. 14

FIGURE 1.3 DIRECTORY LISTING OF USER’S HOME DIRECTORY... 17

FIGURE 1.4 DIRECTORY LISTING OF COURSE’S HOME DIRECTORY 18

FIGURE 1.5 DISTRIBUTIONS FOR DIFFERENT LEARNING CONDITIONS (ADAPTED FROM

BLOOM, 1984) ... 22

FIGURE 1.6 COMPONENTS OF AN INTELLIGENT TUTORING SYSTEM (ITS)........................ 24

FIGURE 2.1 THE BAYESIAN CLASSIFICATION PROCESS (ADAPTED FROM WU ET AL., 1991)

... 31

FIGURE 2.2 A THREE LAYER FEEDFORWARD NEURAL NETWORK (LU ET AL., 1995) 40

FIGURE 3.1 A SAMPLE OF STORED DATA IN ESCAPE SEQUENCE CODE 65

FIGURE 3.2 PERL SCRIP CODE TO RETRIEVE STORED DATA .. 65

FIGURE 3.3 A SAMPLE OF RETRIEVED DATA FROM ACTIVITY LOG..................................... 65

FIGURE 3.4 STRUCTURE OF STORED DATA IN ACTIVITY LOG AND STUDENT DATA BASE... 66

FIGURE 3.5 A SAMPLE OF EXTRACTED ACTIVITY.LOG DATA ... 67

FIGURE 3.6 A SMALL EXCERPT OF THE PERFORMANCE OVERVIEW FOR A SMALL

INTRODUCTORY PHYSICS CLASS ... 72

FIGURE 3.7 SINGLE-STUDENT VIEW OF A PROBLEM ... 74

FIGURE 3.8 COMPILED STUDENT RESPONSES TO A PROBLEM .. 75

FIGURE 3.9 ONE EARLY MEASURE OF A DEGREE OF DIFFICULTY 76

xviii

FIGURE 3.10 SUCCESS (%) IN INITIAL SUBMISSION FOR SELECTING THE CORRECT ANSWER

TO EACH OF SIX ‘CONCEPT’ STATEMENTS... 78

FIGURE 3.11 SUCCESS RATE ON SECOND AND THIRD SUBMISSIONS FOR ANSWERS TO

EACH OF SIX ‘CONCEPT’ STATEMENTS .. 79

FIGURE 3.12 RANDOMLY LABELED CONCEPTUAL PHYSICS PROBLEM.............................. 79

FIGURE 3.13 VECTOR ADDITION CONCEPT PROBLEM ... 81

FIGURE 3.14 UPPER SECTION: SUCCESS RATE FOR EACH POSSIBLE STATEMENT. LOWER

SECTION: RELATIVE DISTRIBUTION OF INCORRECT CHOICES, WITH DARK GRAY AS

“GREATER THAN”, LIGHT GRAY AS “LESS THAN” AND CLEAR AS “EQUAL TO”......... 83

FIGURE 3.15 GRADES ON THE FIRST SEVEN HOMEWORK ASSIGNMENTS AND ON THE FIRST

TWO MIDTERM EXAMINATIONS .. 88

FIGURE 3.16 HOMEWORK VS. EXAM SCORES. THE HIGHEST BIN HAS 18 STUDENTS. 89

FIGURE 4.1 GRAPH OF DISTRIBUTION OF GRADES IN COURSE PHY183 SS02................... 92

FIGURE 4.2: COMPARING ERROR RATE OF CLASSIFIERS WITH 10-FOLD CROSS-VALIDATION

IN THE CASE OF 2-CLASSES .. 101

FIGURE 4.3: TABLE AND GRAPH TO COMPARE CLASSIFIERS’ ERROR RATE, 10-FOLD CV IN

THE CASE OF 2-CLASSES .. 102

FIGURE 4.4: COMPARING ERROR RATE OF CLASSIFIERS WITH 10-FOLD CROSS-VALIDATION

IN THE CASE OF 3-CLASSES .. 103

FIGURE 4.5 COMPARING CLASSIFIERS’ ERROR RATE, 10-FOLD CV IN THE CASE OF 3-

CLASSES .. 104

FIGURE 4.6. GRAPH OF GA OPTIMIZED CMC PERFORMANCE IN THE CASE OF 2-CLASSES

... 127

xix

FIGURE 4.7. GRAPH OF GA OPTIMIZED CMC PERFORMANCE IN THE CASE OF 3-CLASSES127

FIGURE 4.8. GRAPH OF GA OPTIMIZED CMC PERFORMANCE IN THE CASE OF 9-CLASSES128

FIGURE 4.9. CHAR T OF COMPARING CMC AVERAGE PERFORMANCE, USING GA AND

WITHOUT GA. .. 129

FIGURE 4.10. LON-CAPA: BS111 SS03, GRADES DISTRIBUTION................................... 133

FIGURE 4.11 GA-OPTIMIZED COMBINATION OF MULTIPLE CLASSIFIERS’ (CMC)

PERFORMANCE IN THE CASE OF 2-CLASS LABELS (PASSED AND FAILED) FOR BS111

2003, 200 WEIGHT VECTORS INDIVIDUALS, 500 GENERATIONS 136

FIGURE 5.1 DIFFERENT APPROACHES TO CLUSTERING COMBINATION 146

FIGURE 5.2 TAXONOMY OF DIFFERENT APPROACHES TO CLUSTERING COMBINATION..... 147

FIGURE 5.3 FIRST ALGORITHMS FOR CLUSTERING ENSEMBLE, BASED ON CO-ASSOCIATION

MATRIX AND USING DIFFERENT SIMILARITY-BASED CONSENSUS FUNCTIONS 150

FIGURE 5.4 ALGORITHMS FOR CLUSTERING ENSEMBLE BASED ON CATEGORICAL

CLUSTERING... 152

FIGURE 5.5 TWO POSSIBLE DECISION BOUNDARIES FOR A 2-CLUSTER DATA SET. SAMPLING

PROBABILITIES OF DATA POINTS ARE INDICATED BY GRAY LEVEL INTENSITY AT

DIFFERENT ITERATIONS (T0 < T1 < T2) OF THE ADAPTIVE SAMPLING. TRUE COMPONENTS

IN THE 2-CLASS MIXTURE ARE SHOWN AS CIRCLES AND TRIANGLES......................... 160

FIGURE 5.6 ALGORITHMS FOR ADAPTIVE CLUSTERING ENSEMBLES 162

FIGURE 5.7 “HALFRINGS” DATA SET WITH 400 PATTERNS (100-300 PER CLASS) , “2-

SPIRALS” DATASET WITH 200 PATTERNS (100-100 PER CLASS)................................ 163

FIGURE 5.8 “IRIS” DATA SET. BOOTSTRAPPING FOR FIXED CONSENSUS FUNCTION MCLA,

DIFFERENT B, AND DIFFERENT VALUES OF K... 167

xx

FIGURE 5.9 “HALFRINGS” DATA SET. EXPERIMENTS USING SUBSAMPLING WITH K=10 AND

B=100, DIFFERENT CONSENSUS FUNCTION, AND SAMPLE SIZES S. 170

FIGURE 5.10 “STAR/GALAXY” DATA SET. EXPERIMENTS USING SUBSAMPLING, WITH K = 4

AND B = 50 AND DIFFERENT CONSENSUS FUNCTION AND SAMPLE SIZES S. 171

FIGURE 5.11 CLUSTERING ACCURACY FOR ENSEMBLES WITH ADAPTIVE AND NON-

ADAPTIVE SAMPLING MECHANISMS AS A FUNCTION OF ENSEMBLE SIZE FOR SOME DATA

SETS AND SELECTED CONSENSUS FUNCTIONS. .. 176

FIGURE 6.1 A CONTRAST RULE EXTRACTED FROM TABLE 6.1 ... 153

FIGURE 6.2 A CONTRAST RULE EXTRACTED FROM TABLE 6.1 ... 154

FIGURE 6.3 A CONTRAST RULE EXTRACTED FROM TABLE 6.1 ... 154

FIGURE 6.4 A CONTRAST RULE EXTRACTED FROM TABLE 6.1 ... 154

FIGURE 6.5 SET OF ALL POSSIBLE ASSOCIATION RULES FOR TABLE 6.3. 160

FIGURE 6.6 FORMAL DEFINITION OF A CONTRAST RULE... 160

FIGURE 6.7 MINING CONTRAST RULES (MCR) ALGORITHM FOR DISCOVERING INTERESTING

CANDIDATE RULES ... 165

FIGURE 6.8 ATTRIBUTE MINING MODEL, FIXED STUDENTS’ ATTRIBUTES, PROBLEM

ATTRIBUTES, AND LINKING ATTRIBUTES BETWEEN STUDENTS AND PROBLEM.......... 167

FIGURE 6.9 ENTITY RELATIONSHIP DIAGRAM FOR A LON-CAPA COURSE.................... 168

1

Chapter 1 Introduction

The ever-increasing progress of network-distributed computing and particularly the

rapid expansion of the web have had a broad impact on society in a relatively short period

of time. Education is on the brink of a new era based on these changes. Online delivery of

educational instruction provides the opportunity to bring colleges and universities new

energy, students, and revenues. Many leading educational institutions are working to

establish an online teaching and learning presence. Several different approaches have

been developed to deliver online education in an academic setting. In particular,

Michigan State University (MSU) has pioneered some of these systems which provide an

infrastructure for online instruction (Multi-Media Physics; CAPA; LectureOnline;

PhysNet; Kortemeyer and Bauer, 1999; Kashy et al., 1997, LON-CAPA). This study

focuses on the data mining aspects of the latest online educational system developed at

MSU, the Learning Online Network with Computer-Assisted Personalized Approach

(LON-CAPA).

1.1 Statement of the problem

In LON-CAPA, we are involved with two kinds of large data sets: 1) educational

resources such as web pages, demonstrations, simulations, and individualized problems

designed for use on homework assignments, quizzes, and examinations; and 2)

2

information about users who create, modify, assess, or use these resources. In other

words, we have two ever-growing pools of data. As the resource pool grows, the

information from students who have multiple transactions with these resources also

increases. The LON-CAPA system logs any access to these resources as well as the

sequence and frequency of access in relation to the successful completion of any

assignment.

The web browser represents a remarkable enabling tool to get information to and

from students. That information can be textual and illustrated, not unlike that presented in

a textbook, but also include various simulations representing a modeling of phenomena,

essentially experiments on the computer. Its greatest use however is in transmitting

information as to the correct or incorrect solutions of various assigned exercises and

problems. It also transmits guidance or hints related to the material, sometimes also to the

particular submission by a student, and provides the means of communication with fellow

students and teaching staff.

This study investigates data mining methods for extracting useful and interesting

knowledge from the large database of students who are using LON-CAPA educational

resources. This study aims to answer the following research questions:

• How can students be classified based on features extracted from logged data? Do

groups of students exist who use these online resources in a similar way? Can we

predict for any individual student which group they belong to? Can we use this

information to help a student use the resources better, based on the usage of the

resource by other students in their groups?

3

• How can the online problems that students engage in be classified? How do different

types of problems impact students’ achievements? Can the classifications of

problems be employed to find patterns of questions that help student success?

• How can data mining help instructors, problem authors, and course coordinators

better design online materials? Can we find sequences of online problems that

students use to solve homework problems? Can we help instructors to develop their

homework more effectively and efficiently? How can data mining help to detect

anomalies in homework problems designed by instructors?

• How can data mining help find patterns of student behavior that groups of students

take to solve their problems? Can we find some associative rules between students'

educational activities? Can we help instructors predict the approaches that students

will take for some types of problems?

• How can data mining be used to identify those students who are at risk, especially in

very large classes? Can data mining help the instructor provide appropriate advising

in a timely manner?

The goal of this research is to find similar patterns of use in the data gathered from

LON-CAPA, and eventually be able to make predictions as to the most beneficial course

of studies for each student based on a minimum number of variables for each student.

Based on the current state of the student in their learning sequence, the system could then

make suggestions as to how to proceed. Furthermore, through clustering of homework

problems as well as the sequences that students take to solve those problems, we hope to

help instructors design their curricula more effectively. As more and more students enter

4

the online learning environment, databases concerning student access and study patterns

will grow. We are going to develop such techniques in order to provide information that

can be usefully applied by instructors to increase student learning.

This dissertation is organized as follows: The rest of this first chapter provides basic

concepts of data mining and then presents a brief system overview of LON-CAPA that

shows how the homework and student data are growing exponentially, while the current

statistical measures for analyzing these data are insufficient. Chapter 2 introduces the

research background: the important algorithms for data classification and some common

clustering methods. Chapter 3 provides information about structure of LON-CAPA data,

data retrieval process, representing the statistical information about students, problem and

solution strategies, and providing assessment tools in LON-CAPA to detect, to

understand, and to address student difficulties. Chapter 4 explains the LON-CAPA

experiment to classify students and predict their final grades based on features of their

logged data. We design, implement, and evaluate a series of pattern classifiers with

various parameters in order to compare their performance in a real dataset from the LON-

CAPA system. Results of individual classifiers, and their combination as well as error

estimates are presented. Since LON-CAPA data are distributed among several servers

and distributed data mining requires efficient algorithms form multiple sources and

features, chapter 5 represents a framework for clustering ensembles in order to provide an

optimal framework for categorizing distributed web-based educational resources. Chapter

6 discusses the methods to find interesting association rules within the students’

databases. We propose a framework for the discovery of interesting association rules

5

within a web-based educational system. Taken together and used within the online

educational setting, the value of these tasks lies in improving student performance and the

effective design of the online courses. Chapter 7 presents the conclusion of the proposal

and discusses the importance of future work.

1.2 Data Mining

Presently, the amount of data stored in databases is increasing at a tremendous speed.

This gives rise to a need for new techniques and tools to aid humans in automatically and

intelligently analyzing huge data sets to gather useful information. This growing need

gives birth to a new research field called Knowledge Discovery in Databases (KDD) or

Data Mining, which has attracted attention from researchers in many different fields

including database design, statistics, pattern recognition, machine learning, and data

visualization. In this chapter we give a definition of KDD and Data Mining, describing its

tasks, methods, and applications. Our motivation in this study is gaining the best

technique for extracting useful information from large amounts of data in an online

educational system, in general, and from the LON-CAPA system, in particular. The goals

for this study are: to obtain an optimal predictive model for students within such systems,

help students use the learning resources better, based on the usage of the resource by

other students in their groups, help instructors design their curricula more effectively, and

provide the information that can be usefully applied by instructors to increase student

learning.

6

1.2.1 What is Data Mining?

Data Mining is the process of analyzing data from different perspectives and

summarizing the results as useful information. It has been defined as "the nontrivial

process of identifying valid, novel, potentially useful, and ultimately understandable

patterns in data" (Frawley et al., 1992; Fayyad et al., 1996).

Figure 1.1 Steps of the KDD Process (Fayyad et al., 1996)

The process of data mining uses machine learning, statistics, and visualization

techniques to discover and present knowledge in a form that is easily comprehensible.

The word “Knowledge” in KDD refers to the discovery of patterns which are extracted

from the processed data. A pattern is an expression describing facts in a subset of the

data. Thus, the difference between KDD and data mining is that

Selection

Preprocessing /
Cleansing

Transformation

Data Mining

Interpretation
/ Evaluation

D

Knowledge

Target

Preprocessed
Data

Transformed
Data

Patterns

7

“KDD refers to the overall process of discoverying knowledge from

data while data mining refers to application of algorithms for extracting

patterns from data without the additional steps of the KDD process.”

(Fayyad et al., 1996)

However, since Data Mining is a crucial and important part of the KDD process,

most researchers use both terms interchangeably. Figure 1.1 presents the iterative nature

of the KDD process. Here we outline some of its basic steps as are mentioned in

Brachman & Anad (1996):

• Providing an understanding of the application domain, the goals of the system

and its users, and the relevant prior background and prior knowledge (This step

in not specified in this figure.)

• Selecting a data set, or focusing on a subset of variables or data samples, on

which discovery is to be performed

• Preprocessing and data cleansing, removing the noise, collecting the necessary

information for modeling, selecting methods for handling missing data fields,

accounting for time sequence information and changes

• Data reduction and projection, finding appropriate features to represent data,

using dimensionality reduction or transformation methods to reduce the number

of variables to find invariant representations for data

• Choosing the data mining task depending on the goal of KDD: clustering,

classification, regression, and so forth

8

• Selecting methods and algorithms to be used for searching for the patterns in the

data

• Mining the knowledge: searching for patterns of interest

• Evaluating or interpreting the mined patterns, with a possible return to any

previous steps

• Using this knowledge for promoting the performance of the system and

resolving any potential conflicts with previously held beliefs or extracted

knowledge

These are the steps that all KDD and data mining tasks progress through.

1.2.2 Data Mining Methods

The objective of data mining is both prediction and description. That is, to predict

unknown or future values of the attributes of interest using other attributes in the

databases, while describing the data in a manner understandable and interpretable to

humans. Predicting the sale amounts of a new product based on advertising expenditure,

or predicting wind velocities as a function of temperature, humidity, air pressure, etc., are

examples of tasks with a predictive goal in data mining. Describing the different terrain

groupings that emerge in a sampling of satellite imagery is an example of a descriptive

goal for a data mining task. The relative importance of description and prediction can

vary between different applications. These two goals can be fulfilled by any of a number

data mining tasks including: classification, regression, clustering, summarization,

dependency modeling, and deviation detection. (Harrell and Frank, 2001; Montgomery et

al., 2001)

9

1.2.3 Predictive tasks

The following are general tasks that serve predictive data mining goals:

• Classification – to segregate items into several predefined classes. Given a

collection of training samples, this type of task can be designed to find a

model for class attributes as a function of the values of other attributes (Duda

et al., 2001).

• Regression – to predict a value of a given continuously valued variable based

on the values of other variables, assuming either a linear or nonlinear model of

dependency. These tasks are studied in statistics and neural network fields

(Montgomery et al., 2001).

• Deviation Detection – to discover the most significant changes in data from

previously measured or normative values (Arning et al., 1996; Fayyad et al.,

1996). Explicit information outside the data, like integrity constraints or

predefined patterns, is used for deviation detection. Arning et al., (1996)

approached the problem from the inside of the data, using the implicit

redundancy.

1.2.4 Descriptive tasks

• Clustering – to identify a set of categories, or clusters, that describe the data

(Jain & Dubes, 1988).

• Summarization – to find a concise description for a subset of data. Tabulating

the mean and standard deviations for all fields is a simple example of

10

summarization. There are more sophisticated techniques for summarization

and they are usually applied to facilitate automated report generation and

interactive data analysis (Fayyad et al., 1996).

• Dependency modeling – to find a model that describes significant

dependencies between variables. For example, probabilistic dependency

networks use conditional independence to specify the structural level of the

model and probabilities or correlation to specify the strengths (quantitative

level) of dependencies (Heckerman, 1996).

1.2.5 Mixed tasks

There are some tasks in data mining that have both descriptive and predictive

aspects. Using these tasks, we can move from basic descriptive tasks toward higher-order

predictive tasks. Here, we indicate two of them:

• Association Rule Discovery – Given a set of records each of which contain

some number of items from a given collection, produce dependency rules

which will predict the occurrence of an item based on patterns found in the

data.

• Sequential Pattern Discovery – Given a set of objects, where each object is

associated with its own timeline of events, find rules that predict strong

sequential dependencies among different events. Rules are formed by first

discovering patterns followed by event occurrences which are governed by

timing constraints found within those patterns.

11

So far we briefly described the main concepts of data mining. Chapter two focuses

on methods and algorithms of data mining in the context of descriptive and predictive

tasks. The research background of both the association rule and sequential pattern

mining – newer techniques in data mining, that deserve a separate discussion – will be

discussed in chapter five.

Data mining does not take place in a vacuum. In other words, any application of this

method of analysis is dependent upon the context in which it takes place. Therefore, it is

necessary to know the environment in which we are going to use data mining methods.

The next section provides a brief overview of the LON-CAPA system.

1.3 Online Education systems

Several Online Education systems1 such as Blackboard, WebCT, Virtual University

(VU), and some other similar systems have been developed to focus on course

management issues. The objectives of these systems are to present courses and

instructional programs through the web and other technologically enhanced media. These

new technologies make it possible to offer instruction without the limitations of time and

place found in traditional university programs. However, these systems tend to use

existing materials and present them as a static package via the Internet. There is another

approach, pursued in LON-CAPA, to construct more-or-less new courses using newer

network technology. In this model of content creation, college faculty, K-12 teachers, and

students interested in collaboration can access a database of hypermedia software

1 See http://www.edutools.info for an overview of current web-based educational systems.

12

modules that can be linked and combined (Kortemeyer and Bauer, 1999). The LON-

CAPA system is the primary focus of this chapter.

1.3.1 LON-CAPA, System Overview

LON-CAPA is a distributed instructional management system, which provides

students with personalized problem sets, quizzes, and exams. Personalized (or

individualized) homework means that each student sees a slightly different computer-

generated problem. LON-CAPA provides students and instructors with immediate

feedback on conceptual understanding and correctness of solutions. It also provides

faculty the ability to augment their courses with individualized, relevant exercises, and

develop and share modular online resources. LON-CAPA aims to put this functionality

on a homogeneously distributed platform for creating, sharing, and delivering course

content with emphasis on cross-institutional collaboration and intellectual property rights

management.

1.3.2 LON-CAPA Topology

LON-CAPA is physically built as a geographically distributed network of constantly

connected servers. Figure 1.2 shows an overview of this network. All machines in the

network are connected with each other through two-way persistent TCP/IP connections.

The network has two classes of servers: library servers and access servers. A library

server can act as a home server that stores all personal records of users, and is responsible

for the initial authentication of users when a session is opened on any server in the

network. For authors, it also hosts their construction area and the authoritative copy of

13

every resource that has been published by that author. An Access Server is a machine that

hosts student sessions. Library servers can be used as backups to host sessions when all

access servers in the network are overloaded.

Every user in LON-CAPA is a member of one domain. Domains could be defined by

departmental or institutional boundaries like MSU, FSU, OHIOU, or the name of a

publishing company. These domains can be used to limit the flow of personal user

information across the network, set access privileges, and enforce royalty schemes. Thus,

the student and course data are distributed amongst several repositories. Each user in the

system has one library server, which is his/her home server. It stores the authoritative

copy of all of their records.

14

Figure 1.2 A schema of distributed data in LON-CAPA

LON-CAPA currently runs on Redhat-Linux Intel-compatible hardware. The current

MSU production setup consists of several access servers and some library servers. All

15

access servers are set up on a round-robin IP scheme as frontline machines, and are

accessed by the students for “user session.” The current implementation of LON-CAPA

uses mod_perl inside of the Apache web server software.

1.3.3 Data Distribution in LON-CAPA

Educational objects in LON-CAPA range from simple paragraphs of text, movies,

and applets, to individualized homework problems. Online educational projects at MSU

have produced extensive libraries of resources across disciplines. By combining these

resources, LON-CAPA produces a national distributed digital library with mechanisms

to store and retrieve these objects. Participants in LON-CAPA can publish their own

objects in the common pool. LON-CAPA will allow groups of organizations

(departments, universities, schools, commercial businesses) to link their online

instructional resources in a common marketplace, thus creating an online economy for

instructional resources (lon-capa.org). Internally, all resources are identified primarily by

their URL.

LON-CAPA does enable faculty to combine and sequence these learning objects at

several levels. For example, an instructor from Community College A in Texas can

compose a page by combining a text paragraph from University B in Detroit with a

movie from College C in California and an online homework problem from Publisher D

in New York. Another instructor from High School E in Canada might take that page

from Community College A and combine it with other pages into a module, unit or

section. Those in turn can be combined into whole course packs.

16

1.3.4 Resource Variation in LON-CAPA

LON-CAPA provides three types of resources for organizing a course. LON-CAPA

refers to these resources as Content Pages, Problems, and Maps. Maps may be either of

two types: Sequences or Pages. LON-CAPA resources may be used to build the outline,

or structure, for the presentation of the course to the students.

• A Content Page displays course content. It is essentially a conventional html

page. These resources use the extension “.html”.

• A Problem resource represents problems for the students to solve, with

answers stored in the system. These resources are stored in files that must use

the extension “.problem”.

• A Page is a type of Map which is used to join other resources together into

one HTML page. For example, a page of problems will appear as a problem

set. These resources are stored in files that must use the extension “.page”.

• A Sequence is a type of Map, which is used to link other resources together.

Sequences are stored in files that must use the extension “.sequence”.

Sequences can contain other sequences and pages.

Authors create these resources and publish them in library servers. Then, instructors

use these resources in online courses. The LON-CAPA system logs any access to these

resources as well as the sequence and frequency of access in relation to the successful

completion of any assignment. All these accesses are logged.

17

1.3.5 LON-CAPA Strategy for Data Storage

Internally, the student data is stored in a directory:

/home/httpd/lonUsers/domain/1st.char/2nd.char/3rd.char/username/

For example /home/httpd/lonUsers/msu/m/i/n/minaeibi/

Figure 1.3 shows a list of a student’s data. Files ending with .db are GDBM files

(Berkeley database), while those with a course-ID as name, for example

msu_12679c3ed543a25msul1.db, store performance data for that student in the course.

ls -alF /home/httpd/lonUsers/msu/m/i/n/minaeibi

-rw-r--r-- 1 www users 13006 May 15 12:21 activity.log
-rw-r----- 1 www users 12413 Oct 26 2000 coursedescriptions.db
-rw-r--r-- 1 www users 11361 Oct 26 2000 coursedescriptions.hist
-rw-r----- 1 www users 13576 Apr 19 17:45 critical.db
-rw-r--r-- 1 www users 1302 Apr 19 17:45 critical.hist
-rw-r----- 1 www users 13512 Apr 19 17:45 email_status.db
-rw-r--r-- 1 www users 1496 Apr 19 17:45 email_status.hist
-rw-r--r-- 1 www users 12373 Apr 19 17:45 environment.db
-rw-r--r-- 1 www users 169 Apr 19 17:45 environment.hist
-rw-r----- 1 www users 12315 Oct 25 2000 junk.db
-rw-r--r-- 1 www users 1590 Nov 4 1999 junk.hist
-rw-r----- 1 www users 23626 Apr 19 17:45 msu_12679c3ed543a25msul1.db
-rw-r--r-- 1 www users 3363 Apr 19 17:45 msu_12679c3ed543a25msul1.hist
-rw-r----- 1 www users 18497 Dec 21 11:25 msu_1827338c7d339b4msul1.db
-rw-r--r-- 1 www users 3801 Dec 21 11:25 msu_1827338c7d339b4msul1.hist
-rw-r----- 1 www users 12470 Apr 19 17:45 nohist_annotations.db
-rw-r----- 1 www users 765954 Apr 19 17:45 nohist_email.db
-rw-r--r-- 1 www users 710631 Apr 19 17:45 nohist_email.hist
-rw-r--r-- 1 www users 13 Apr 19 17:45 passwd
-rw-r--r-- 1 www users 12802 May 3 13:08 roles.db
-rw-r--r-- 1 www users 1316 Apr 12 16:05 roles.hist

Figure 1.3 Directory listing of user’s home directory

Courses are assigned to users, not vice versa. Internally, courses are handled like

users without login privileges. The username is a unique ID, for example

msu_12679c3ed543a25msul1 – every course in every semester has a unique ID, and

there is no semester transition. The user-data of the course includes the full name of the

course, a pointer to its top-level resource map (“course map”), and any associated

deadlines, spreadsheets, etc., as well as a course enrollment list. The latter is somewhat

18

redundant, since in principle, this list could be produced by going through the roles of all

users, and looking for the valid role for a student in that course.

ls -alF /home/httpd/lonUsers/msu/1/2/6/12679c3ed543a25msul1/

-rw-r----- 1 www users 17155 Apr 25 16:20 classlist.db
-rw-r--r-- 1 www users 60912 Apr 25 16:20 classlist.hist
-rw-r----- 1 www users 12354 Jan 4 16:40 environment.db
-rw-r--r-- 1 www users 82 Jan 4 16:40 environment.hist
-rw-r----- 1 www users 103030 May 15 14:47 nohist_calculatedsheets.db
-rw-r----- 1 www users 13050 May 9 21:04 nohist_expirationdates.db
-rw-r--r-- 1 www users 6 Jan 4 16:40 passwd
-rw-r----- 1 www users 17457 May 9 21:04 resourcedata.db
-rw-r--r-- 1 www users 8888 May 9 21:04 resourcedata.hist

Figure 1.4 Directory listing of course’s home directory

An example of course data is shown in Figure 1.4. classlist is the list of

students in the course, environment includes the course’s full name, etc, and

resourcedata are deadlines, etc. The parameters for homework problems are stored

in these files.

To identify a specific instance of a resource, LON-CAPA uses symbols or “symbs.”

These identifiers are built from the URL of the map, the resource number of the resource

in the map, and the URL of the resource itself. The latter is somewhat redundant, but

might help if maps change. An example is

msu/korte/parts/part1.sequence___19___msu/korte/tests/part12.problem

The respective map entry is

 <resource id="19" src="/res/msu/korte/tests/part12.problem"

 title="Problem 2">

 </resource>

19

Symbs are used by the random number generator, as well as to store and restore data

specific to a certain instance of a problem. More details of the stored data and their exact

structures will be explained in chapter three, when we will describe the data acquisition

of the system.

1.3.6 Resource Evaluation in LON-CAPA

One of the most challenging aspects of the system is to provide instructors with

information concerning the quality and effectiveness of the various materials in the

resource pool on student understanding of concepts. These materials can include web

pages, demonstrations, simulations, and individualized problems designed for use on

homework assignments, quizzes, and examinations. The system generates a range of

statistics that can be useful in evaluating the degree to which individual problems are

effective in promoting formative learning for students. For example, each exam problem

contains attached metadata that catalog its degree of difficulty and discrimination for

students at different phases in their education (i.e., introductory college courses,

advanced college courses, and so on). To evaluate resource pool materials, a standardized

format is required so that materials from different sources can be compared. This helps

resource users to select the most effective materials available.

LON-CAPA has also provided questionnaires which are completed by faculty and

students who use the educational materials to assess the quality and efficacy of resources.

In addition to providing the questionnaires and using the statistical reports, we

investigate here methods to find criteria for classifying students and grouping problems

by examining logged data such as: time spent on a particular resource, resources visited

20

(other web pages), due date for each homework, the difficulty of problems (observed

statistically) and others. Thus, floods of data on individual usage patterns need to be

gathered and sorted – especially as students go through multiple steps to solve problems,

and choose between multiple representations of the same educational objects like video

lecture demonstrations, a derivation, a worked example, case-studies, and etc. As the

resource pool grows, multiple content representations will be available for use by

students.

There has been an increasing demand for automated methods of resource evaluation.

One such method is data mining, which is the focus of this research. Since the LON-

CAPA data analyses are specific to the field of education, it is important to recognize the

general context of using artificial intelligence in education.

The following section presents a brief review of intelligent tutoring systems – one

typical application of artificial intelligence in the field of education. Note that herein the

purpose is not to develop an intelligent tutoring system; instead we apply the main ideas

of intelligent tutoring systems in an online environment, and implement data mining

methods to improve the performance of the educational web-based system, LON-CAPA.

1.4 Intelligent Tutoring Systems (ITSs)

Intelligent tutoring systems are computer-based instructional systems that attempt to

determine information about a student’s learning status, and use that information to

dynamically adapt the instruction to fit the student’s needs. Examples of educational

researchers who have investigated this area of inquiry are numerous: Urban–Lurain,

1996; Petrushin, 1995; Benyon and Murray, 1993; Winkkels, 1992; Farr and Psotka,

21

1992; Venezky and Osin, 1991; Larkin and Cabay, 1991; Goodyear, 1990; Frasson and

Gauthier, 1988; Wenger, 1987; Yazdani, 1987. ITSs are often known as knowledge-

based tutors, because they have separate knowledge bases for different domain

knowledge. The knowledge bases specify what to teach and different instructional

strategies specify how to teach (Murray, 1996).

One of the fundamental assumptions in ITS design is from an important experiment

(Bloom, 1956) in learning theory and cognitive psychology, which states that

individualized instruction is far superior to class-room style learning. Both the content

and style of instruction can be continuously adapted to best meet the needs of a student

(Bloom, 1984). Educational psychologists report that students learn best “by doing”,

learn through their mistakes, and learn by constructing knowledge in a very

individualized way (Kafaei and Resnik, 1996; Ginsburg and Opper, 1979; Bruner, 1966).

For many years, researchers have argued that individualized learning offers the most

effective and cognitively efficient learning for most students (Juel, 1996; Woolf, 1987).

Intelligent tutoring systems epitomize the principle of individualized instruction.

Previous studies have found that intelligent tutoring systems can be highly effective

learning aids (Shute and Regine, 1990). Shute (1991) evaluates several intelligent

tutoring systems to judge how they live up to the main promise of providing more

effective and efficient learning in relation to traditional instructional techniques. Results

of such studies show that ITSs do accelerate learning.

22

1.4.1 Learning Enhancement in ITSs

In one study, Bloom (1984) states that conventional teaching methods provide the

least effective method of learning. As instruction becomes more focused and

individualized, learning is enhanced. He compares students’ scores on achievement tests

using three forms of instruction: conventional teaching, mastery teaching, and

individualized tutoring. Mastery teaching is an instructional technique whereby a teacher

supplements a lecture with diagnostic tests to determine where students are having

problems, and adjusts the instruction accordingly. The results of this comparison are

shown in Figure 1.5. Students receiving conventional teaching scored in the 50th

percentile, students receiving mastery teaching scored in the 84th percentile, while

students receiving individualized tutoring scored in the 98th percentile.

 50% 84% 98%
Percentiles: Summative Achievement Scores

Conventional (1 : 30)

Mastery Learning (1 : 30)

Individualized Tutoring (1 : 1)

Number
of

Students

Figure 1.5 Distributions for different learning conditions (Adapted from Bloom,
1984)

23

Bloom replicates these results four times with three different age groups for two

different domains, and thus, provides concrete evidence that tutoring is one of the most

effective educational delivery methods available.

Since ITSs attempt to provide more effective learning through individualized

instruction, many computer-assisted instruction techniques exist that can present

instruction and interact with students in a tutor-like fashion, individually or in small

groups. The incorporation of artificial intelligence techniques and expert systems

technology to computer-assisted instruction systems gave rise to intelligent tutoring

systems – i.e., systems that model the learner’s understanding of a topic and adapt

instruction accordingly. A few examples of systematically controlled evaluations of ITSs

reported in the literature are shown in Table 1.1.

Table 1.1 Different Specific ITSs and their affects on learning rate

 ITS Literature Objective progress

LISP tutor (Anderson, 1990) Instructing LISP
programming 1/3-2/3 less time

Smithtown (Shute and Glaser,
1990)

Teach scientific inquiry
skills

1/2 time, same
knowledge

Sherlock (Lesgold et al.,1990) Avionics troubleshooting 1/5 time, same
knowledge

Pascal ITS (Shute, 1991) Teach Pascal
programming

1/3 time, same
knowledge

Stat Lady (Shute et al., 1993) Instruct statistical
procedures More performance

Geometry
Tutor

(Anderson et al.,
1985) Teach geometry theorems Better solving

24

Shute and Poksta (1996) examine the results of these evaluations, which show that

the tutors do accelerate learning with no degradation in outcome performance. The tutors

should be evaluated with respect to the promises of ITSs – speed and effectiveness. In all

cases, individuals using ITSs learned faster, and performed at least as well as those

learning from traditional teaching environments. The results show that these

individualized tutors could not only reduce the variance of outcome scores, but also

increase the mean outcome dramatically.

1.4.2 Basic Architecture of an ITS

There is no standard architecture for an ITS. Nevertheless, four components emerge

from the literature as part of an ITS (Wasson, 1997; Costa, 1992; Polson and Richardson,

1988; Yazdani, 1987; Wenger, 1987; Sleeman and Brown, 1982). These are the student

model, the pedagogical module, the expert model, and the communication module or

interface. These four components and their interactions are illustrated in Figure 1.6.

Figure 1.6 Components of an Intelligent Tutoring System (ITS)

Pedagogical Student

Communication

Expert Model

Learner

25

The student model stores information of each individual learner. For example, such a

model tracks how well a student is performing on the material being taught or records

incorrect responses that may indicate misconceptions. Since the purpose of the student

model is to provide data for the pedagogical module of the system, all of the information

gathered should be usable by the tutor.

The pedagogical module provides a model of the teaching process. For example,

information about when to review, when to present a new topic, and which topic to

present is controlled by this module. As mentioned earlier, the student model is used as

input to this component, so the pedagogical decisions reflect the differing needs of each

student.

The expert model contains the domain knowledge, which is the information being

taught to the learner. However, it is more than just a representation of the data; it is a

model of how someone skilled in a particular domain represents the knowledge. By using

an expert model, the tutor can compare the learner's solution to the expert's solution,

pinpointing the places where the learner has difficulties. This component contains

information the tutor is teaching, and is the most important since without it, there would

be nothing to teach the student. Generally, this aspect of ITS requires significant

knowledge engineering to represent a domain so that other parts of the tutor can access it.

The communication module controls interactions with a student, including the

dialogue and the screen layouts. For example, it determines how the material should be

presented to the student in the most effective way.

26

These four components – the student model, the pedagogical module, the expert

model, and the communication module – shared by all ITSs, interact to provide the

individualized educational experience promised by technology. The orientation or

structure of each of these modules, however, varies in form depending on the particular

ITS.

Current research trends focus on making tutoring systems truly “intelligent,” in the

artificial sense of the word. The evolution of ITSs demands more controlled research in

four areas of intelligence: the domain expert, student model, tutor, and interface.

• The domain knowledge must be understood by the computer well enough for the

expert model to draw inferences or solve problems in the domain.

• The system must be able to deduce a student’s approximation of that knowledge.

• The tutor must be intelligent to the point where it can reduce differences between the

expert and student performance.

• The interface must possess intelligence in order to determine the most effective way

to present information to the student.

For ITSs to have a great impact on education, these and other issues must be

resolved. To take advantage of newer, more effective instructional techniques, ITSs of

the future will have to allow for increased student initiative and inter-student

collaboration (Shute and Psotka, 1996). ITSs must also assess learning as it transfers to

authentic tasks, not standardized tests, and establish connections across fields so that

topics are not learned in isolation. A more fruitful approach for ITS development may be

to develop specific cognitive tools, for a given domain or applicable across domains.

27

Such a transition would allow future ITSs to be everywhere, as embedded assistants that

explain, critique, provide online support, coach, and perform other ITS activities.

1.4.3 Learning and Cognition Issues for ITS Development and Use

There are some findings in the areas of cognition and learning processes that impact

the development and use of intelligent tutoring systems. Many recent findings are paving

the way towards improving our understanding of learners and learning (Bransford, Brown

et al., 2000). Learners have preconceptions about how the world works. If their initial

understanding is not referenced or activated during the learning process, they may fail to

understand any new concepts or information.

One key finding regarding competence in a domain is the need to have a more than a

deep knowledge base of information related to that domain. One must also be able to

understand that knowledge within the context of a conceptual framework – the ability to

organize that knowledge in a manner that facilitates its use. A key finding in the learning

and transfer literature is that organizing information into a conceptual framework allows

for greater transfer of knowledge. By developing a conceptual framework, students are

able to apply their knowledge in new situations and to learn related information more

quickly. For example, a student who has learned problem solving for one topic in the

context of a conceptual framework will use that ability to guide the acquisition of new

information for a different topic within the same framework. This fact is explained by

Hume (1999): "When we have lived any time, and have been accustomed to the

uniformity of nature, we acquire a general habit, by which we always transfer the known

to the unknown, and conceive the latter to resemble the former.”

28

A relationship exists between the learning and transfer of knowledge to new

situations. Transferring is usually a function of the relationships between what is learned

and what is tested. For students to transfer knowledge successfully across domains, they

must conceive of their knowledge base in terms of continuous, rather than discrete steps.

Recent research by Singley and Anderson indicates that the transfer of knowledge

between tasks is a function of the degree to which the tasks share cognitive elements

(Singley and Anderson, 1989). In their study, Singley and Anderson taught students

several text editors, one after the other. They found that students learned subsequent text

editors more rapidly and that the number of procedural elements shared by the two text

editors predicted the amount of transfer. Their results showed that there was large transfer

across editors that were very different in surface structures but had common abstract

structures. Singley and Anderson were able to generate similar results for the transfer of

mathematical competence across multiple domains.

Emerging computer-based technologies hold great promise as a means of supporting

and promoting learning. There are several ways that such technology can be used to help

meet the challenges of developing effective learning environments (El-Sheikh, 2001):

• Bringing real-world problems to the learning environment.

• Providing “scaffolding” support to students during the learning process.

Scaffolding allows students to participate in complex cognitive experiences,

such as model-based learning, that is more difficult without technical support.

• Increasing opportunities for learners to receive feedback and guidance from

software tutors and learning environments.

29

• Building local and global communities of teachers, administrators, students,

and other interested learners.

• Expanding opportunities for teachers’ learning.

Learning environments need to be developed and implemented with a full

understanding of the principles of learning and developmental psychology. In addition,

these new learning environments need to be assessed carefully, including how their use

can facilitate learning, as well as the cognitive, social, and learning consequences of

using these new tools.

1.5 Summary

This research addresses data mining methods for extracting useful and interesting

knowledge from the large data sets of students using LON-CAPA educational resources.

The purpose is to develop techniques that will provide information that can be usefully

applied by instructors to increase student learning, detect anomalies in homework

problems, design the curricula more effectively, predict the approaches that students will

take for some types of problems, and provide appropriate advising for students in a

timely manner, etc. This introductory chapter provided an overview of the LON-CAPA

system, the context in which we are going to use data mining methods. In addition, a

brief introduction to Intelligent Tutoring Systems provided examples of expert systems

and artificial intelligence in educational software. Following this, it is necessary to

analyze data mining methods that can be applied within this context in greater detail.

 30

Chapter 2 Background on Data Mining Methods

In the previous chapter we described the basic concepts of data mining. This chapter

focuses on methods and algorithms in the context of descriptive and predictive tasks of

data mining. We describe clustering methods in data mining, and follow this with a study

of the classification methods developed in related research while extending them for

predictive purposes. The research background for both association rule and sequential

pattern mining will be presented in chapter five.

2.1 Classification and Predictive Modeling

Classification is used to find a model that segregates data into predefined classes.

Thus classification is based on the features present in the data. The result is a description

of the present data and a better understanding of each class in the database. Thus

classification provides a model for describing future data (Duda et al., 2001; McLachlan,

1992; Weiss and Kulikowski, 1991; Hand, 1987). Prediction helps users make a decision.

Predictive modeling for knowledge discovery in databases predicts unknown or future

values of some attributes of interest based on the values of other attributes in a database

(Masand and Shapiro, 1996). Different methodologies have been used for classification

and developing predictive modeling including Bayesian inference (Kontkanen et al.,

1996), neural net approaches (Lange, 1996), decision tree-based methods (Quinlan, 1986)

and genetic algorithms-based approaches (Punch et al., 1995).

 31

2.1.1 Bayesian Classifier

One of the major statistical methods in data mining is Bayesian inference. The naive

Bayesian classifier provides a simple and effective approach to classifier learning. It

assumes that all class-conditional probability densities are completely specified. Even

though this assumption is often violated in real world data sets, a naïve Bayesian

classifier (where a small number of parameters are not completely specified) is employed

(Jain et al., 2000; Duda et al., 2001; Wu et al., 1991). The Bayes classifier shown in

Figure 2.1 can be explained as follows: A set of patterns aj, j = 1,…,n, is given, and every

pattern is sensed by a sensing device which is capable of capturing the features. Each

pattern is considered in terms of a measurement vector xi. A pattern aj belongs to a

classification set iω , which includes all the possible classes that can be assigned to

pattern aj. For the sake of simplicity, all feature measurements are considered identical

and each pattern belongs only to one of the m-possible classes iω , i = 1,…,m.

Figure 2.1 The Bayesian Classification Process (Adapted from Wu et al., 1991)

To classify a pattern into one of the m classes, a feature space is constructed

according to the measurement vector x, which is considered to be a measurement of true

Evaluation
Likelihood
Functions Pattern

gi

{i=i,…m}

aj
{j=j,…n}

Maximum
Selector

n

Bayesian Classification

Feature
Extraction

Decisionxj

g1

g2

gm

 32

values damaged by random noisy data. The class-conditional probability density

functions estimated from training data represent the uncertainty in discovered knowledge.

)|(ixp ω , i = 1,…,m. (2.1)

Bayes decision theory states that the a-posteriori probability that an event may be

calculated according to the following equation:

)(
)()|(

)|(
xp

pxp
xp ii

i
ωω

ω = , i = 1,…,m. (2.2)

Eventually, the decision criteria can be applied for classification. To gain the optimal

solution, the maximum likelihood classification or the Bayesian minimum error decision

rule is applied. It is obtained by minimizing the misclassification and errors in

classification. Thus, a pattern is classified into class iω with the highest posteriori

probability or likelihood:

.,...,1},{max mjgg iji == (2.3)

The quadratic discriminant function using the Bayesian approach is the most

common method in supervised parametric classifiers. If the feature vectors are assumed

to be Gaussian in distribution, the parameters of the Gaussians are estimated using

maximum likelihood estimations. The discriminant function decision rule and the a-

posteriori probabilities for each classification are calculated for each sample test, x, using

the following equation (Duda et al., 2001):

)(ln||ln
2
1)()(

2
1)(1

iiii
T

ii pxxxg ωµµ +∑−−∑−−= −

,
(2.4)

 33

where x is a d×1 vector representing any point in the d-dimensional feature space, µi

(also a d × 1 vector) is the sample mean of the ith class training sample, and i∑ (d × d) is

the sample covariance matrix of the ith class training sample. To obtain the optimal

solution, the maximum likelihood classification or the Bayesian minimum error decision

rule is applied. The sample is then assigned to the class that produces the highest a-

posteriori probability. It is obtained by minimizing the misclassification and errors in

classification.

2.1.2 Decision tree-based method

Decision tree-based methods are popular methods for use in a data mining context.

The decision tree classifier uses a hierarchical or layered approach to classification. Each

vertex in the tree represents a single test or decision. The outgoing edges of a vertex

correspond to all possible outcomes of the test at that vertex. These outcomes partition

the set of data into several subsets, which are identified by every leaf in the tree. A leaf of

the tree specifies the expected value of the categorical attribute for the records described

by the path from the root to that leaf. Learned trees can also be represented as sets of if-

then-else rules. (Mitchell, 1997)

An instance is classified by starting at the root node of the tree. At each level of the

tree the attributes of an instance are matched to a number of mutually exclusive nodes.

The leaf nodes assign an instance to a class. The classification of an instance therefore

involves a sequence of tests where each successive test narrows the interpretation. The

sequence of tests for the classifier is determined during a training period. Given some

new data, the ideal solution would test all possible sequences of actions on the attributes

 34

of the new data in order to find the sequence resulting in the minimum number of

misclassifications.

Tree-based classifiers have an important role in pattern recognition research because

they are particularly useful with non-metric data (Duda et al., 2001). Decision tree

methods are robust to errors, including both errors in classifying the training examples

and errors in the attribute values that describe these examples. Decision tree can be used

when the data contain missing attribute values. (Mitchell, 1997)

 Most algorithms that have been developed for decision trees are based on a core

algorithm that uses a top-down, recursive, greedy search on the space of all possible

decision trees. This approach is implemented by ID3 algorithm2 (Quinlan, 1986) and its

successor C4.5 (Quinlan, 1993). C4.5 is an extension of ID3 that accounts for unavailable

values, continuous attribute value ranges, pruning of decision trees, and rule derivation.

The rest of this section discusses some important issues in decision trees classifiers.

2.1.2.1 What is the best feature for splitting?

The first question that arises in all tree-based algorithms concerns which properties

are tested in each node? In other words, which attribute is the “most informative” for the

classifier? We would like to select the attribute that is the most informative of the

attributes not yet considered in the path from the root. This establishes what a "Good"

decision tree is. Entropy is used to measure a node’s information. Claude Shannon (1984)

introduced this notion in “Information Theory”. Based on entropy, a statistical property

2 ID3 got this name because it was the third version of “interactive dichotomizer” procedure.

 35

called information gain measures how well a given attribute separates the training

examples in relation to their target classes.

2.1.2.1.1 Entropy impurity

Entropy characterizes the impurity of an arbitrary collection of examples S at a

specific node N. Sometimes (Duda et al., 2001) the impurity of a node N is denoted by

i(N).

)(log)()()(2 j
j

j PPNiSEntroy ωω∑−== (2.5)

where)(jP ω is the fraction of examples at node N that go to category jω .

If all the patterns are from the same category the impurity is 0, otherwise it is

positive; if all categories are equally distributed at node N then the impurity has its

greatest value 1.

The key question then is, on the decision path from the root to node N, what features

and their values should we select for the test at node N when property query T is used? A

heuristic is suggested to select a query that decreases the impurity as much as possible

(Duda et al., 2001).

)()1()()()(RLLL NiPNiPNiNi −−−=∆ (2.6)

where LN and RN are the left and right descendent nodes, and the)(LNi and)(RNi are

their impurities respectively, and LP is fraction of patterns at node N that will go to LN

when the property query T is used. The goal of the heuristic is to maximize i∆ , thus

 36

minimizing the impurities corresponds to an information gain which is provided by the

query.

2.1.2.1.2 Gini impurity

One can rank and order each splitting rule on the basis of the quality-of-split

criterion. Gini is the default rule in CART because it is often the most efficient splitting

rule. Essentially, it measures how well the splitting rule separates the classes contained in

the parent node (Duda et al., 2001).

)(1)()()(2
j

j
i

ij
j PPPNi ωωω ∑∑ −==

≠
(2.7)

As shown in the equation, it is strongly peaked when probabilities are equal. So what

is Gini trying to do? Gini attempts to separate classes by focusing on one class at a time.

It will always favor working on the largest or, if you use costs or weights, the most

"important" class in a node.

2.1.2.1.3 Twoing impurity

An alternative criterion also available in CART is Twoing impurity. The philosophy

of Twoing is different from that of Gini. Rather than initially pulling out a single class,

Twoing first segments the classes into two groups, attempting to find groups that together

add up to 50 percent of the data. Twoing then searches for a split to separate the two

subgroups (Duda et al., 2001). This is an ideal split. It is unlikely that any real-world

database would allow you to cleanly separate four important classes into two subgroups

in this way. However, splits that approach this ideal might be possible, and these are the

splits that Twoing seeks to find.

 37

2.1.2.2 How to Avoid Overfitting

If we continue to grow the tree until each leaf node corresponds to the lowest

impurity then the data is typically overfit. In some cases every node corresponds to a

single training input. In such cases we cannot expect an appropriate generalization in

noisy problems having high Bayes error (Duda et al. 2001; Russell and Norvig, 1997).

On the other hand if we stop splitting early, then a high performance tree classifier will

not be achieved. There are several approaches to avoid overfitting in the training phase of

tree-based classification:

2.1.2.2.1 Cross-Validation

Cross-validation is a technique to eliminate the occurrence of overfitting. The main

idea of cross-validation is to estimate how well the current hypothesis will predict unseen

data (Duda et al. 2001; Russell and Norvig, 1997). This is done by randomly dividing the

data into two subsets, training and test. Usually, the test subset is a fraction of all of the

data, i.e., 10%. The hypothesis induced from the training phase is tested on the rest of

data to get the prediction performance. This should be repeated on different subsets of

data, and then the result averaged. Cross-validation should be used in order to select a

tree with good prediction performance.

2.1.2.2.2 Setting a threshold

Another method for overfitting avoidance is to consider a small threshold value in

minimizing the impurity. We stop splitting when the impurity at a node is reduced by less

than the considered threshold. The benefit of this method over the cross-validation is that

 38

the tree is trained using all the training data. Another benefit of this method is that leaf

nodes can lie at different levels of the tree.

2.1.2.2.3 Pruning

The principal alternative of stop-splitting is pruning (Duda et al., 2001). One

approach, called reduced-error pruning (Quinlan, 1987), sets each node in the decision

tree to be candidate for pruning. “Pruning a decision node consists of removing the

subtree rooted at that node, making it a leaf node, and assigning it the most common

classification of the training examples affiliated with that node. Nodes are removed only

if the resulting pruned tree performs no worse than the original over the validation set.”

(Mitchell, 1997)

In C4.5, Quinlan (1993) applied a successful technique for finding high accuracy

hypotheses during the pruning process, which is called rule post pruning. It involves the

following steps:

1. Induce the decision tree from the training set, growing the tree until the training data

is fully fitted as well as possible, allowing overfitting to occur.

2. Convert the learned tree into an equivalent set of rules by creating a rule

corresponding to a path from the root to a leaf node.

3. Prune each rule by deleting any preconditions that lead to promoting the estimated

accuracy.

4. Sort the pruned rules by their estimated accuracy, and set them in a sequence for

classifying the instances.

 39

Why should we prefer a short hypothesis? We wish to create small decision trees so

that records can be identified after only a few questions. According to Occam's Razor,

“Prefer the simplest hypothesis that fits the data” (Duda et al., 2001).

2.1.2.3 Drawbacks of decision tree

The drawback of decision trees is that they are implicitly limited to talking about a

single data point. One cannot consider two or more objects to make a decision about, thus

the decision boundary in this classifier is linear and often too coarse. In other words, once

a node is split, the elements in a child stay in that sub-tree forever. Therefore, the

decision tree classifier often yields a sub-optimal decision boundary. Another drawback

of decision trees is that they are very instable in the presence of noisy data (Duda et al.,

2001; Mitchell, 1997).

2.1.3 Neural Network Approach

A neuron is a special biological cell with information processing ability (Jain et al.,

1996). The classification approach based on an Artificial Neural Network (ANN) (a

connectionist model) generates a lower classification error rate than the decision tree

approach in several cases, yet it requires more training time (Quinlan, 1994; Russle and

Norvig, 1995). A neural network is usually a layered graph with the output of one node

feeding into one or more nodes in the next layer.

The Multi-layer Perceptron (MLP) is a basic feedforward artificial neural network

using a back-propagation algorithm for training. That is, during training, information is

propagated back through the network and used to update connection weights. According

to Ruck et al., (1990), multi-layer perceptron training uses the back-propagation learning

 40

algorithm to approximate the optimal discriminant function defined by Bayesian theory.

The output of the MLP approximates the posteriori probability functions of the classes

being trained. The Sigmoidial activation function is used for learning the input weight

vectors in the training phase as follows:

)(1
1)(xe

xf −+
=

(2.8)

Tuning each of the learning rate, the number of epochs, the number of hidden layers,

and the number of neurons (nodes) in every hidden layer is a very difficult task and all

must be set appropriately to reach a good performance for MLP. In each epoch the input

data are used with the present weights to determine the errors, then back-propagated

errors are computed and weights updated. A bias is provided for the hidden layers and

output.

Figure 2.2 A Three Layer Feedforward Neural Network (Lu et al., 1995)

Output

Hidden

Input

 41

Adopting data mining techniques to MLP is not possible without representing the

data in an explicit way. Lu et al.(1995) made an effort to overcome this obstacle by using

a three-layer neural network to perform classification, which is the technique employed

in this study. ANNs are made up of many simple computational elements (neurons),

which are densely interconnected. Figure 2.2 shows a three-layer feedforward network,

which has an input layer, a hidden layer, and an output layer. A node (neuron) in the

network has a number of inputs and a single output. Every link in the network is

associated with a weight. For example, node Ni has ix1 , …, i
nx as its inputs and ai as its

output. The input links of Ni have weights iw1 , …, i
nw . A node generates its output (the

activation value) by summing up its input weights, subtracting a threshold and passing

the result to a non-linear function f (activation function). Outputs from neurons in a layer

are fed as inputs to next layer. Thus, when an input tuple (1x , …, xn) is applied to the

input layer of a network, an output tuple (1c , …, cm) is obtained, where ci has value 1 if

the input tuple belongs to class ci and 0 otherwise.

Lu et al.'s approach uses an ANN to mine classification rules through three steps

explained as follows:

1. In the first step, a three-layer network is trained to find the best set of weights to

classify the input data at a satisfactory level of accuracy. The initial weights are

selected randomly from the interval [-1, 1]. These weights are then updated

according to the gradient of the error function. This training phase is terminated

when the norm of the gradient falls below a preset threshold.

 42

2. Redundant links (paths) and nodes (neurons) that is, those nodes that don’t have

any effects on performance are removed and therefore, and a pruned network is

obtained.

3. Comprehensible and concise classification rules are extracted from the pruned

network in the form of: “if (a1 θ v1) & (a2 θ v2) & … & (an θ vn) then Cj

where an ai is an input attribute value, vi is a constant, θ is a relational operator

(=, ,≤ ≥ , <,>), and Cj is one of the class labels.

2.1.4 k-Nearest Neighbor (kNN) Decision Rule

The k-nearest neighbor algorithm makes a classification for a given sample without

making any assumptions about the distribution of the training and testing data. Each

testing sample must be compared to all the samples in the training set in order to classify

the sample. In order to make a decision using this algorithm, the distances between the

testing sample and all the samples in the training set must first be calculated. In this

proposal, the Euclidean distance is calculated, but, in general, any distance measurement

may be used. The euclidean distance metric requires normalization of all features into the

same range. At this point, the k closest neighbors of the given sample are determined

where k represents an integer number between 1 and the total number of samples. The

testing sample is then assigned to the label most frequently represented among the k

nearest samples (Duda et al., 2001). The value of k that is chosen for this decision rule

has an affect on the accuracy of the decision rule. The k-nearest neighbor classifier is a

nonparametric classifier that is said to yield an efficient performance for optimal values

of k.

 43

2.1.5 Parzen Window classifier

In this approach a d-dimensional window is formed around all the training samples

and then, based on the number of patterns that fit in those windows, the probability

estimates of the different classes are made. This can be stated as follows (Duda et al.,

2001):

n

i
n

i n
n h

xx
vn

xp
)(11)(

1

−
= ∑

=

ϕ

(2.9)

where nv is a d-dimensional hypercube in the feature space, and ϕ is a general

probability distribution function.)(xpn is the probability that the pattern fits in the given

class. It is necessary to choose the form of ϕ . One can assume a multivariate normal

distribution forϕ . The windows are centered on the training points, hence, the mean is

known, but there is no predefined method to determine the variance. Depending upon the

problem under study, the variance is estimated by minimizing the error rate and

maximizing the classifier performance. Therefore, it needs to be determined by trial and

error. In our experiment we assume that the classes are independent and thus the

covariance matrices for the Gaussian distribution are diagonal.

 44

2.2 Clustering

Data clustering is a sub-field of data mining dedicated to incorporating techniques

for finding similar groups within a large database. Data clustering is a tool for exploring

data and finding a valid and appropriate structure for grouping and classifying the data

(Jain & Dubes, 1988). A cluster indicates a number of similar objects, such that the

members inside a cluster are as similar as possible (homogeneity), while at the same time

the objects within different clusters are as dissimilar as possible (heterogeneity) (Hoppner

et al., 2000). The property of homogeneity is similar to the cohesion attribute between

objects of a class in software engineering, while heterogeneity is similar to the coupling

attribute between the objects of different classes.

Unlike data classification, data clustering does not require category labels or

predefined group information. Thus, clustering has been studied in the field of machine

learning as a type of unsupervised learning, because it relies on “learning from

observation” instead of “learning from examples.” The pattern proximity matrix could be

measured by a distance function defined on any pairs of patterns (Jain & Dubes, 1988;

Duda et al., 2001).). A simple distance measure i.e., Euclidean distance can be used to

express dissimilarity between every two patterns.

The grouping step can be performed in a number of ways. “Hierarchical clustering

algorithms produce a nest series of partitions based on a criterion for merging or splitting

clusters based on similarity. Partitional clustering algorithms identify the partition that

optimizes a clustering criterion” (Jain et al. 1999). Two general categories of clustering

 45

methods are partitioning method, and hierarchical method – both of which are employed

in analysis of the LON-CAPA data sets.

2.2.1 Partitional Methods

A partitional algorithm assuming a set of n objects in d-dimensional space and an

input parameter, k, organizes the objects into k clusters such that the total deviation of

each object from its cluster center is minimized. The deviation of an object in a cluster

depends on the similarity function, which in turn depends on the criterion employed to

distinguish the objects of different clusters. Clusters can be of arbitrary shapes and sizes

in multidimensional space. Every particular clustering criterion implies a specified

structure for the data. These criteria are employed in some of the most popular

partitioning methods: square error approach, mixture model, mode estimation, graph

connectivity, and nearest neighbor relationship.

The most common approach in these methods is to optimize the criterion function

using an iterative, hill-climbing technique. Starting from an initial partition, objects are

moved from one cluster to another in an effort to improve the value of the criterion

function (Jain & Dubes, 1988). Each algorithm has a different way for representing its

clusters.

2.2.1.1 k-mean Algorithm

The k-means algorithm is the simplest and most commonly used clustering algorithm

employing a square error criterion (McQueen 1967). It is computationally fast, and

iteratively partitions a data set into k disjoint clusters, where the value of k is an

algorithmic input (Jain & Dubes, 1988; Duda et al. 2001). The goal is to obtain the

 46

partition (usually of hyper-spherical shape) with the smallest square-error. Suppose k

clusters {C1, C2, …, Ck} such that Ck has nk patterns. The mean vector or center of cluster

Ck

(2.10)

where ni is number of patterns in cluster Ci, (among exactly k clusters: C1, C2, …, Ck) and

x is the point in space representing the given object.

The total squared-error: where

which is computed in this way:

The steps of the iterative algorithm for partitional clustering are as follows:

1. Choose an initial partition with k < n clusters (µ1, µ2 , … , µk) are cluster centers

and n is the number of patterns).

2. Generate a new partition by assigning a pattern to its nearest cluster center µi.

3. Recompute new cluster centers µi.

4. Go to step 2 unless there is no change in µi.

5. Return µ1, µ2 , … , µk as the mean values of C1, C2, …, Ck.

The idea behind this iterative process is to start from an initial partition assigning the

patterns to clusters and to find a final partition containing k clusters that minimizes E for

fixed k. In step 3 of this algorithm, k-means assigns each object to its nearest center

forming a set of clusters. In step 4, all the centers of these new clusters are recomputed

with function E by taking the mean value of all objects in every cluster. This iteration is

∑
=

=
K

k
kK eE

1

22)()()(

1

)(2 kk
i

Tn

i

kk
ik xxe

k

µµ −−=∑
=

∑
=

=
kn

i

k
i

k

k x
n 1

)()(1µ

 47

repeated until the criterion function E no longer changes. The k-means algorithm is an

efficient algorithm with the time complexity of O(ndkr), where n is the total number of

objects, d is the number of features, k is the number of clusters, and r is the number of

iterations such that r<k<n.

The weaknesses of this algorithm include a requirement to specify the parameter k,

the inability to find arbitrarily shaped clusters, and a high sensitivity to noise and outlier

data. Because of this, Jain & Dubes, (1988) have added a step before step 5: “Adjust the

number of clusters by merging and splitting the existing clusters or by removing small, or

outlier clusters”.

Fuzzy k-means clustering (soft clustering). In the k-means algorithm, each data point

is allowed to be in exactly one cluster. In the fuzzy clustering algorithm we relax this

condition and assume that each pattern has some “fuzzy” membership in a cluster. That

is, each object is permitted to belong to more than one cluster with a graded membership.

Fuzzy clustering has three main advantages: 1) it maps numeric values into more abstract

measures (fuzzification); 2) student features (in LON-CAPA system) may overlap

multiple abstract measures, and there may be a need to find a way to cluster under such

circumstances; and 3) most real-world classes are fuzzy rather than crisp. Therefore, it is

natural to consider the fuzzy set theory as a useful tool to deal with the classification

problem (Dumitrescu et al., 2000).

Some of the fuzzy algorithms are modifications of the algorithms of the square error

type such as k-means algorithm. The definition of the membership function is the most

challenging point in a fuzzy algorithm. Baker (1978) has presented a membership

function based on similarity decomposition. The similarity or affinity function can be

 48

based on the different concept such as Euclidean distance or probability. Baker and Jain

(1981) define a membership function based on mean cluster vectors. Fuzzy partitional

clustering has the same steps as the squared error algorithm, which is explained in the k-

means algorithm section.

2.2.1.2 Graph Connectivity

A graph can represent the relationship between patterns. Every vertex represents a

pattern and every edge represents the relation between two patterns. The edge weights are

distances between two adjacent vertices. The criterion function here is that the pairs of

patterns, which belong to the same cluster, should be closer than any pair belonging to

different clusters. Several graph structures, such as minimum spanning trees (MST)

(Zahn, 1971), relative neighborhood graphs (Toussaint, 1980), and Gabriel Graphs

(Urquhart, 1982), have been applied to present a set of patterns in order to detect the

clusters. For example, Zahn’s algorithm consists of the following steps: 1) Create the

MST for the entire set of N patterns. 2) Determine the inconsistent edges. 3) Delete the

inconsistent edges from MST. 4) The remaining components are our clusters.

This algorithm can be applied recursively on the resulting components to determine

new clusters. The heart of this algorithm lies in the definition of inconsistency. Zahn

(1971) presents several criteria for inconsistency. An edge is inconsistent if its weight is

much larger than the average of all other nearby edge weights. Other definitions of

inconsistency are dependent on either the ratio between, or the standard deviation in

which an edge weight differs from the average of nearby edge weights.

 49

2.2.1.3 Nearest Neighbor Method

Since the distance matrix gives us an intuition of a cluster, nearest-neighbor

distances can be used as the core of a clustering method. In this method every pattern is

assigned to the same cluster as its nearest neighbor. An iterative procedure was proposed

by Lu and Fu (1978) where each unlabeled pattern is assigned to the cluster of its nearest

labeled neighbor pattern, provided the distance to that labeled neighbor is below a

threshold. The process continues until all patterns are labeled or no additional labeling

can occur. This algorithm partitions a set of {x1, x2, …, xn} patterns into a set of k clusters

{C1, C2, …, Ck}. The user should specify a threshold r, which determines the maximum

acceptable nearest neighbor distance. The steps of this algorithm are described in Jain &

Dubes (1988). The number of clusters k which are generated is a function of the

parameter r. As the value of r is increased the number of clusters k is decreased..

2.2.1.4 Mixture density clustering

The mixture resolving method assumes that the patterns are drawn from a particular

distribution, and the goal is to identify the parameters of that distribution. Usually it is

assumed that the individual components of the target partition are the mixture of a

Gaussian distribution, and thus the parameters of the individual Gaussians are to be

estimated (Jain et al., 1999). There are traditional approaches to use a maximum

likelihood estimate of the parameter vectors for the component densities (Jain & Dubes,

1988). Dempster et al. (1977) proposed a general framework for maximum likelihood

using the Expectation Maximization (EM) algorithm to estimate the parameters for

missing data problems. The EM algorithm widely employed to estimate maximum

 50

likelihood estimation in in-complete data problems where there are missing data

(McLachlan & Krishnan, 1997).

The EM algorithm is an iterative method for learning a probabilistic categorization

model from unlabeled data. In other words, the parameters of the component densities are

unknown and EM algorithm aims to estimate them from the patterns. The EM algorithm

initially assumes random assignment of examples to categories. Then an initial

probabilistic model is learned by estimating model parameters from this randomly

labeled data. We then iterate over the following two steps until convergence:

 Expectation (E-step): Rescore every pattern given the current model, and

probabilistically re-label the patterns based on these posterior probability estimates.

 Maximization (M-step): Re-estimate the model parameters from the probabilistically

re-labeled data.

A practical description of this algorithm has been provided in Mitchell (1997).

2.2.1.5 Mode Seeking

One of the simplest ways to determine the modes in a dataset is to construct a

histogram by portioning the pattern space into k non-overlapping regions. Regions with

relatively high pattern frequency counts are the modes or cluster centers. In non-

parametric density estimation, the clustering procedure searches for bins with large

counts in a multidimensional histogram of the input patterns (Jain & Dubes, 1988). The

regions of pattern space in which the patterns are the densest would represent the

partition components. The regions that include fewer numbers of patterns separate the

clusters.

 51

As with other clustering methods, there are benefits and drawbacks. The advantage

of the density estimation method is that it does not require knowing the number of

clusters and their prior probabilities. The disadvantage of this approach is that the process

of looking for the peaks and valleys in the histogram is difficult in more than a few

dimensions and requires the user to identify the valleys in histograms for splitting

interactively.

2.2.1.6 k-medoids

Instead of taking the mean value of the data points in a cluster, the k-medoids

method represents a cluster with an actual data point that is the closest to the center of

gravity of that cluster. Thus, the k-medoids method is less sensitive to noise and outliers

than the k-means and the EM algorithms. This, however, requires a longer computational

time. To determine which objects are good representatives of clusters, the k-medoids

algorithm follows a cost function that dynamically evaluates any non-center data point

against other existing data points.

2.2.1.6.1 Partitioning Around Medoids (PAM)

PAM (Kaufman & Rousseeuw, 1990) is one of the first k-medoids clustering

algorithms which first selects the initial k cluster centers randomly within a data set of N

objects. For every k cluster centers, PAM examines all non-center (N – k) objects and

tries to replace each of the centers with one of the (N – k) objects that would reduce the

square error the most. PAM works well when the number of data points is small.

However, PAM is very costly, because for every k × (N – k) pairs PAM examines the (N

 52

– k) data points to compute the cost function. Therefore, the total complexity is O(k × (N

– k)2).

2.2.1.6.2 CLARA

Because of the complexity inherent in PAM, an enhanced version of PAM was

developed for use in large data sets. CLARA (Clustering LARge Applications) is a

sampling-based method that was developed by Kaufman & Rousseeuw (1990). CLARA

selects a small portion of data to represent all data points therein. It selects the medoids

from these samples using PAM. The cost function is computed using the whole data set.

The efficiency of CLARA depends on the sample size, S. CLARA searches for the best k-

medoids among the sample of the data set. For more efficient results, CLARA draws

multiple samples from the data set, runs PAM on each sample and returns the best

clustering. The complexity of each iteration becomes O(k × S2 + k × (N – k)) where S is

the sample size, k is the number of clusters, and N is the number of data objects. It is

important to note, when comparing this complexity with that of the standard PAM, the

major distinction lies in the power of N – k, the largest value within the expression.

2.2.1.6.3 CLARANS

CLARANS (Clustering Large Applications based upon RANdomized Search) was

proposed by Ng and Han (1994) to improve the quality and scalability of CLARA. This

algorithm tries to find a better solution by randomly picking one of the k centers and

replacing it with another randomly chosen object from the remaining objects. The goal of

CLARANS is not to find the best set of data points that represent the cluster centers.

Instead, it trades accuracy for efficiency and tries to find the local optimum. The

 53

randomized procedure applied by CLARANS is the strong point of this algorithm. Ng

and Han (1994) have shown that CLARANS outperforms the PAM and CLARA

algorithms, however, the computational complexity has been reported to be

approximately O(N2) (Han et al., 2001). The clustering quality is highly dependent upon

the sampling method employed. Ester et al. (1995) improved the performance of

CLARANS using special clustering methods, such as R*-trees.

2.2.1.7 Other partitional methods for large data sets

The main drawback of the CLARA and CLARANS algorithms is their requirement

to hold the entire data set in the main memory. In general, large data mining applications

do not allow the entire data set to be stored in the main memory, so clustering algorithms

that can handle this situation are required. Some approaches were proposed to cluster the

data from such sets that we explain two of them as follows.

1. Divide and conquer approach. The entire data set is stored in a secondary

memory. The stored data is divided into p subsets. Each subset is clustered

separately into k clusters. One or more representative samples from each of these

clusters are stored individually. In the final step, all these p subset clusters are

merged into k clusters to obtain a clustering of the entire set. This method can be

extended to any number of levels (subsets); more subsets are necessary if the

main memory size is small and the data set is very large (Murty and Krishna,

1980). The drawback of this algorithm is that it works well only when the points

in each subset are realistically homogenous, e.g. in image data sets (Jain et al.,

1999).

 54

2. Incremental clustering. In this method the entire pattern matrix is stored in a

secondary location from which data objects are loaded into main memory one at a

time and assigned to existing clusters. Only the cluster representatives are stored

in the main memory. Each new data is allocated to an existing cluster or assigned

to a new cluster depending on criteria like the distance between the loaded data

point and the cluster’s representative. This method is naturally non-iterative, thus

the time complexity requirement is as small as the memory requirement (Jain et

al., 1999).

2.2.2 Hierarchical Methods

Hierarchical methods decompose the given set of data items forming a tree, which is

called dendrogram. A dendrogram splits the dataset recursively into smaller subsets. A

dendrogram can be formed in two ways:

1. The Bottom-up approach, also referred to as the agglomerative approach, starts

with each object forming a distinct group. It successively merges the groups

according to some measure, such as the distance between the centers of the

groups, which continues until all of the groups are merged into one – the top most

level of hierarchy.

2. The Top-down approach, also referred to as the divisive approach, starts with all

the objects in the same cluster. In every successive iteration, a cluster is split into

smaller groups according to some measure until each object is eventually in one

cluster, or until a termination condition is met.

3. Hierarchical methods are popular in biological, social and behavioral systems,

which often need to construct taxonomies. Due to rapidly increasing data

 55

densities, dendrograms are impractical when the number of patterns exceeds a few

hundred (Jain & Dubes, 1988). As a result, partitional techniques are more

appropriate in the case of large data sets. The dendrogram can be broken at

different levels to obtain different clusterings of the data (Jain et al., 1999).

2.2.2.1 Traditional Linkage Algorithms

The main steps of hierarchical agglomerative algorithms are as follows: We compute

the proximity matrix including the distances between each pair of patterns. Each pattern

is treated as a cluster in the first run. Using the proximity matrix we find the most similar

pair of clusters and merge these two clusters into one. At this point, the proximity matrix

is updated to imitate the merge operation. We continue this process until all patterns are

in one cluster. Based on how the proximity matrix is updated a range of agglomerative

algorithms can be designed (Jain et al., 1999).

1. single-link clustering: The similarity between one cluster and another cluster is

equal to the greatest similarity between any member of one cluster and any

member of another cluster. It is important to note that, by “greatest similarity,” a

smallest distance is implied.

2. complete-link clustering: The distance between one cluster and another cluster is

equal to the greatest distance from any member of one cluster to any member of

another cluster. Unlike the single-link algorithm, this is focused on the lowest

similarity between clusters.

3. average-link clustering: The distance between one cluster and another cluster is

equal to the average distance from any member of one cluster to any member of

the another cluster.

 56

2.2.2.2 BIRCH

The BIRCH (Balanced Iterative Reducing and Clustering) algorithm (Zhang et al.,

1996) uses a hierarchical data structure, which is referred to as a CF-tree (Clustering-

Feature-Tree) for incremental and dynamic clustering of data objects. The BIRICH

algorithm represents data points as many small CF-trees and then performs clustering

with these CF-trees as the objects. A CF is a triplet summarizing information about the

sub-cluster in the CF-tree; CF = (N, LS, SS) where N denotes the number of objects in the

sub-cluster, LS is the linear sum of squares of the data points, and SS is the sum of

squares of the data points. Taken together, these three statistical measurements become

the object for further pair-wise computation between any two sub-clusters (CF-trees). CF-

trees are height-balanced trees that can be treated as sub-clusters. The BIRCH algorithm

calls for two input factors to construct the CF-tree: the branching input factor B and

threshold T. The branching parameter, B, determines the maximum number of child

nodes for each CF node. The threshold, T, verifies the maximum diameter of the sub-

cluster kept in the node (Han et al, 2001).

A CF tree is constructed as the data is scanned. Each point is inserted into a CF node

that is most similar to it. If a node has more than B data points or its diameter exceeds the

threshold T, BIRCH splits the CF nodes into two. After doing this split, if the parent node

contains more than the branching factor B, then the parent node is rebuilt as well. The

step of generating sub-clusters stored in the CF-trees can be viewed as a pre-clustering

stage that reduces the total number of data to a size that fits in the main memory. The

BIRCH algorithm performs a known clustering algorithm on the sub-cluster stored in the

CF-tree. If N is the number of data points, then the computational complexity of the

 57

BIRCH algorithm would be O(N) because it only requires one scan of the data set –

making it a computationally less expensive clustering method than hierarchical methods.

Experiments have shown good clustering results for the BIRCH algorithm (Han et al,

2001). However, similar to many partitional algorithms it does not perform well when the

clusters are not spherical in shape and also when the clusters have different sizes. This is

due the fact that this algorithm employs the notion of diameter as a control parameter

(Han et al, 2001). Clearly, one needs to consider both computational cost and geometrical

constraints when selecting a clustering algorithm, even though real data sets are often

difficult to visualize when first encountered.

2.2.2.3 CURE

The CURE (Clustering Using REpresentatives) algorithm (Guha et al., 1998)

integrates different partitional and hierarchical clusters to construct an approach which

can handle large data sets and overcome the problem of clusters with non-spherical shape

and non-uniform size. The CURE algorithm is similar to the BIRCH algorithm and

summarizes the data points into sub-clusters, then merges the sub-clusters that are most

similar in a bottom-up (agglomerative) style. Instead of using one centroid to represent

each cluster, the CURE algorithm selects a fixed number of well-scattered data points to

represent each cluster (Han et al., 2001).

Once the representative points are selected, they are shrunk towards the gravity

centers by a shrinking factor α which ranges between 0 and 1. This helps eliminate the

effects of outliers, which are often far away from the centers and thus usually shrink

more. After the shrinking step, this algorithm uses an agglomerative hierarchical method

to perform the actual clustering. The distance between two clusters is the minimum

 58

distance between any representative points. Therefore, if α = 1, then this algorithm will

be a single link algorithm, and if α = 0, then it would be equivalent to a centroid-based

hierarchical algorithm (Guha & Rastogi, 1998). The algorithm can be summarized as

follows:

1. Draw a random sample s from the data set.

2. Partition the sample, s, into p partitions (each of size |s| / p).

3. Using the hierarchical clustering method, cluster the objects in each sub-cluster

(group) into |s| / pq clusters, where q is a positive input parameter.

4. Eliminate outliers; if a cluster grows too slowly, then eliminate it.

5. Shrink multiple cluster representatives toward the gravity center by a fraction of

the shrinking factor α.

6. Assign each point to its nearest cluster to find a final clustering.

This algorithm requires one scan of the entire data set. The complexity of the

algorithm would be O(N) where N is the number of data points. However, the clustering

result depends on the input parameters |s|, p, and α. Tuning these parameters can be

difficult and requires some expertise, making this algorithm difficult to recommend (Han

et al. 2001).

2.3 Feature Selection and Extraction

Feature extraction and selection is a very important task in the classification or

clustering process. Feature selection is the procedure of discovering the most effective

subset of the original features to use in classification/clustering. Feature extraction is the

process of transforming the input features to produce new relevant features. Either or

both of these techniques can be used to obtain an appropriate set of features to use in

 59

classification or clustering. Why do we need to use feature selection or extraction? We

can denote the benefits (Jain, 2000) of feature selection and extraction as follows:

2.3.1 Minimizing the cost

In many real world applications, feature measurement is very costly, especially with

a large sample size. Pei, et al. (1998) presented in the context of a biological pattern

classification that the most important 8 out of 96 features gives 90% classification

accuracy. They showed that feature selection has a great potential effect in minimizing

the cost of extracting features and maintaining good classification results.

2.3.2 Data Visualization

For explanatory purposes it is useful to project high dimensional data down to two or

three dimensions. The main concern is protecting the distance information and

deployment of the original data in two or three dimensions. The traditional approach in

data visualization is linear projection. A more convenient choice is projecting the data

onto a graph (Mori 1998). "Chernoff Faces" project the feature space onto cartoon faces,

by which one can visualize more than three features (Chernoff, 1973).

2.3.3 Dimensionality Reduction

Based on an ideal situation where we have an infinite number of training samples,

classification would be more accurate when we have more features because generally,

more features gives more information. Nevertheless, in real applications with finite

sample sizes, the maximum performance is inversely proportional to the number of

features (Duda & Heart, 1973).

 60

The demand for a large number of samples grows exponentially with the

dimensionality of the feature space. This is due to the fact that as the dimensionality

grows, the data objects becomes increasingly sparse in the space it occupies. Therefore,

for classification, this means that there are not enough sample data to allow for reliable

assignment of a class to all possible values; and for clustering, the definition of density

and distance among data objects, which is critical in clustering, becomes less meaningful

(Duda & Heart, 1973).

This limitation is referred to as the “curse of dimensionality” (Duda et al., 2001).

Trunk (1979) has represented the curse of dimensionality problem through an exciting

and simple example. He considered a 2-class classification problem with equal prior

probabilities, and a d-dimensional multivariate Gaussian distribution with the identity

covariance matrix for each class. Trunk showed that the probability of error approaches

the maximum possible value of 0.5 for this 2-class problem. This study demonstrates that

one cannot increase the number of features when the parameters for the class-conditional

density are estimated from a finite number of training samples. Therefore, when the

training sets are limited, one should try to select a small number of salient features.

This puts a limitation on non-parametric decision rules such as k-nearest neighbor.

Therefore it is often desirable to reduce the dimensionality of the space by finding a new

set of bases for the feature space.

2.3.4 Feature Selection

A thorough review of feature selection has been presented in Jain (2000). Jain et al.

(1997) presented a taxonomy of available feature selection algorithms based on pattern

 61

recognition or ANN, sub-optimal or optimal, single solution or multi-solution, and

deterministic or stochastic.

What are the criteria for choosing a feature subset? A subset of features might be

chosen in regards to the following points:

1. The relevance to the classification result: that is, we remove the irrelevant

features based on prior knowledge of the classification task. Langley (1994)

has a useful review on relevance and feature selection.

2. The correlation with the other features: High correlation among features will

add no more efficiency to classification (Harrell & Frank, 2001). That is, if

two features are highly correlated, one of the features is redundant, even

though it is relevant.

John et al. (1994) has presented the definitions of Strong Relevance and Weak

Relevance by considering the correlations among feature samples. Hall and Smith (1998)

formulated a measure of “Goodness of feature” as follows:

“Good feature subsets contain features highly correlated (predictive of) with the

class, yet uncorrelated with (not predictive of) each other.”

2.3.5 Feature Extraction

Feature extraction can be either a linear or non-linear transformation of the original

feature space. Principal Component Analysis (PCA) and Linear Discriminant Analysis

(LDA) are the most commonly used techniques for feature extraction. PCA is an

unsupervised technique which is intended for feature extraction, while LDA is

supervised.

 62

The idea of the PCA is to preserve the maximum variance after transformation of the

original features into new features. The new features are also referred to as “principal

components” or “factors.” Some factors carry more variance than other, but if we limit

the total variance preserved after such a transformation to some portion of the original

variance, we can generally keep a smaller number of features. PCA performs this

reduction of dimensionality by determining the covariance matrix. After the PCA

transformation in a d-dimensional feature space the m (m < d) largest eigenvalues of the

d × d covariance matrix are preserved. That is, the uncorrelated m projections in the

original feature space with the largest variances are selected as the new features, thus the

dimensionality reduces from d to m (Duda al et., 2001).

LDA uses the same idea but in a supervised learning environment. That is, it selects

the m projections using the criterion that maximizes the inter-class variance while

minimizing the intra-class variance (Duda al et., 2001). Due to supervision, LDA is more

efficient than PCA for feature extraction.

As explained in PCA, m uncorrelated linear projections are selected as the extracted

features. Nevertheless, from the statistical point of view, for two random variables that do

not hold normal distribution, uncorrelated between each other does not necessarily lead to

independent between each other. Therefore, a novel feature extraction technique,

Independent Component Analysis (ICA) has been proposed to handle the non-Gaussian

distribution data sets (Comon, 1994). Karhunen (1997) gave an simple example when the

axes found by ICA is different than those found by PCA for two features uniformly

distributed inside a parallelogram.

 63

2.4 Summary

A body of literature was briefly explained which deals with the different problems

involved in data mining for performing classification and clustering upon a web-based

educational data. The major clustering and classification methods are briefly explained,

along with the concepts, benefits, and methods for feature selection and extraction. In the

next chapter, we design and implement a series of pattern classifiers in order to compare

their performance for a data set from the LON-CAPA system. This experiment provides

an opportunity to study how classification methods could be put into practice for future

web-based educational systems.

 64

Chapter 3 Data Representation and Assessment

Tools in LON-CAPA

This chapter provides information about the structure of LON-CAPA data namely:

its data retrieval process, how we provide assessment tools in LON-CAPA on many

aspects of teaching and learning process. Our ability to detect, to understand, and to

address student difficulties is highly dependent on the capabilities of the tool. Feedback

from numerous sources has considerably improved the educational materials, which is a

continuing task.

3.1 Data Acquisition and Extracting the Features

3.1.1 Preprocessing student database

Preprocessing and finding the useful student data and segmenting may be a difficult

task. As mentioned earlier, LON-CAPA has two kinds of large data sets: 1) Educational

resources such as web pages, demonstrations, simulations, and individualized problems

designed for use on homework assignments, quizzes, and examinations; 2) Information

about users, who create, modify, assess, or use these resources.

The original data are stored with escape sequence codes as shown in Figure 3.1:

 65

1007070627:msul1:1007070573%3a%2fres%2fadm%2fpages%2fgrds%2egif%3aminaeibi%3amsu%26100707
0573%3a%2fres%2fadm%2fpages%2fstat%2egif%3aminaeibi%3amsu%261007070574%3amsu%2fmmp%2flabq
uiz%2flabquiz%2esequence___1___msu%2fmmp%2flabquiz%2fnewclass%2ehtml%3aminaeibi%3amsu%261
007070589%3amsu%2fmmp%2flabquiz%2flabquiz%2esequence___5___msu%2fmmp%2flabquiz%2fproblems
%2fquiz2part2%2eproblem%3aminaeibi%3amsu%261007070606%3a%2fadm%2fflip%3aminaeibi%3amsu%26
1007070620%3a%2fadm%2fflip%3aminaeibi%3amsu%261007070627%3a%2fres%2fadm%2fpages%2fs%2egif
%3aminaeibi%3amsu%261007070627%3a%2fadm%2flogout%3aminaeibi%3amsu

Figure 3.1 A sample of stored data in escape sequence code

To sense the data we use the following Perl script function as shown in Figure 3.2

 my $str; my $line;
open (LOG ,$file);
while ($line =<LOG>) {
 my ($dumptime,$host,$entry)=split(/\:/,$line);
 my $str = unescape($entry);
 my ($time,$url,$usr,$domain,$store,$dummy)=split(/\:/,$str);
 my $string = escape($store);
 foreach(split(/\&/,$string)){
 print "$time $url $usr domain \n";
 }
}

sub unescape {
 my $str=shift;
 $str =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C",hex($1))/eg;
 return $str;
}

Figure 3.2 Perl scrip code to retrieve stored data

After passing the data from this filter we have the following results as shown in

Figure 3.3:

1007070573 /res/adm/pages/grds.gif minaeibi /res/adm/pages/stat.gif
1007670091 /res/adm/pages/grds.gif minaeibi /adm/flip
1007676278
msu/mmp/labquiz/labquiz.sequence___2___msu/mmp/labquiz/problems/quiz1part1.problem
1007743917 /adm/logout minaeibi
1008203043 msu/mmp/labquiz/labquiz.sequence___1___msu/mmp/labquiz/newclass.html minaeibi
1008202939 /adm/evaluate minaeibi /adm/evaluate
1008203046 /res/adm/pages/g.gif minaeibi /adm/evaluate
1008202926 /adm/evaluate minaeibi

Figure 3.3 A sample of retrieved data from activity log

The student data restored from .db files from a student directory and fetched into a

hash table. The special hash keys “keys”, “version” and “timestamp” were obtained from

the hash. The version will be equal to the total number of versions of the data that have

been stored. The timestamp attribute is the UNIX time the data was stored. keys is

available in every historical section to list which keys were added or changed at a specific

 66

historical revision of a hash. We extract some of the features from a structured homework

data, which is stored as particular URL’s. The structure is shown in figure 3.4.

resource.partid.opendate #unix time of when the local machine should let the
 #student in
resource.partid.duedate #unix time of when the local machine should stop
 #accepting answers
resource.partid.answerdate #unix time of when the local machine should
 #provide the correct answer to the student
resource.partid.weight # points the problem is worth
resource.partid.maxtries # maximum number of attempts the student can have
resource.partid.tol # lots of possibilities here
 # percentage, range (inclusive and exclusive),
 # variable name, etc
 # 3%
 # 0.5
 # .05+
 # 3%+
 # 0.5+,.005
resource.partid.sig # one or two comma sepearted integers, specifying the
 # number of significatn figures a student must use
resource.partid.feedback # at least a single bit (yes/no) may go with a
 # bitmask in the future, controls whether or not
 # a problem should say "correct" or not
resource.partid.solved # if not set, problem yet to be viewed
 # incorrect_attempted == incorrect and attempted
 # correct_by_student == correct by student work
 # correct_by_override == correct, instructor override
 # incorrect_by_override == incorrect, instructor override
 # excused == excused, problem no longer counts for student
 # '' (empty) == not attempted
 # ungraded_attempted == an ungraded answer has been
 sumbitted and stored
resource.partid.tries # positive integer of number of unsuccessful attempts
 # made, malformed answers don't count if feedback is
 # on
resource.partid.awarded # float between 0 and 1, percentage of
 # resource.weight that the stundent earned.
resource.partid.responseid.submissons
 # the student submitted string for the part.response
resource.partid.responseid.awarddetail
 # list of all of the results of grading the submissions
 # in detailed form of the specific failure
 # Possible values:
 # EXACT_ANS, APPROX_ANS : student is correct
 # NO_RESPONSE : student submitted no response
 # MISSING_ANSWER : student submitted some but not
 # all parts of a response
 # WANTED_NUMERIC : expected a numeric answer and
 # didn't get one
 # SIG_FAIL : incorrect number of Significant Figures
 # UNIT_FAIL : incorrect unit
 # UNIT_NOTNEEDED : Submitted a unit when one shouldn't
 # NO_UNIT : needed a unit but none was submitted
 # BAD_FORMULA : syntax error in submitted formula
 # INCORRECT : answer was wrong
 # SUBMITTED : submission wasn't graded

Figure 3.4 Structure of stored data in activity log and student data base

For example, the result of solving homework problem by students could be extracted

from resource.partid.solved, the total number of the students for solving the

 67

problem could be extracted from resource.partid.tries, and so forth. One of the

difficult phases to data mining in the LON-CAPA system is gathering the student and

course data, which are distributed in several locations. Finding the relevant data and

segmentation phase is complicated as well.

3.1.2 Preprocessing Activity Log

LON-CAPA records and dynamically organizes a vast amount of information on

students' interaction with and understanding of these materials. Since LON-CAPA logs

every activity of every student who has used online educational resources and their

recorded paths, the activity.log usually grows faster when students have more access to

the educational resources. A sample of different types of data, which are logged in

activity.log after a preprocessing phase, is shown in figure 3.5.

144) 1010955846: studentX --> /adm/navmaps eb. This information is stored in an
“activity.log” which is located in a course’s directory. The data stored in the
activity.log includes user name, time and resource URL.
145) 1010955205: studentX --> /res/msu/mmp/kap14/picts/beta_eqn.gif
147) 1010955988: studentX --> /adm/navmaps
148) 1010955998: studentX --> msu/mmp/kap14/kap14.sequence___5___msu/mmp/kap14/cd396.htm
149) 1010955999: studentX --> /res/msu/mmp/kap14/picts/velocity_eqn3.gif
150) 1010956000: studentX --> /res/msu/mmp/kap14/picts/time_eqn.gif
151) 1010954609: studentX --> /res/adm/pages/grds.gif
152) 1010954611: studentX --> /res/msu/mmp/wordproc.gif
153) 1010954626: studentX --> /res/adm/pages/i.gif
154) 1010955717: studentX --> msu/mmp/kap14/kap14.sequence___1___msu/mmp/kap14/cd392.htm
155) 1010955717: studentX --> /res/msu/mmp/kap14/picts/backsoun.gif
156) 1010955920: studentX --> msu/mmp/kap14/kap14.sequence___3___msu/mmp/kap14/cd394.htm
157) 1010955921: studentX --> /res/msu/mmp/gifs/demo.gif
163) 1010955754: studentX --> msu/mmp/kap14/kap14.sequence___2___msu/mmp/kap14/cd393.htm
164) 1010955756: studentX --> /res/msu/mmp/kap14/picts/asound.jpg
166) 1010955999: studentX --> /res/msu/mmp/gifs2/example.gif
173) 1010955687: studentX --> /res/adm/pages/u.gif
174) 1010955688: studentX --> /res/adm/pages/e.gif
175) 1010956528: studentX -->
msu/mmp/kap14/kap14.sequence___33___msu/mmp/kap14/problems/cd418a.problem
176) 1010956536: studentX -->
msu/mmp/kap14/kap14.sequence___33___msu/mmp/kap14/problems/cd418a.problem
178) 1010956536: studentX -->
msu/mmp/kap14/kap14.sequence___33___msu/mmp/kap14/problems/cd418a.problem

Figure 3.5 A sample of extracted Activity.log data

 68

3.1.3 Extractable Features

An essential step to perform classification is selecting the features used for

classification. The following features are examples of those stored by the LON-CAPA

system:

• Total number of correct answers.

• Getting the problem right on the first try.

• Number of attempts before correct answer is derived.

• Total time that passed from the first attempt, until the correct solution was

demonstrated, regardless of the time spent logged in to the system. Also, the time

at which the student got the problem correct relative to the due date.

• Total time spent on the problem regardless of whether they got the correct answer

or not. Total time that passed from the first attempt through subsequent attempts

until the last submission was demonstrated.

• Participating in the communication mechanisms, versus those working alone.

LON-CAPA provides online interaction both with other students and with the

instructor.

• Reading the supporting material before attempting homework vs. attempting the

homework first and then reading up on it.

• Submitting a lot of attempts in a short amount of time without looking up material

in between, versus those giving it one try, reading explanatory/supportive

material, submitting another one, and so forth.

• Giving up on a problem versus students who continued trying up to the deadline.

 69

• Time of the first log on (beginning of assignment, middle of the week, last

minute) correlated with the number of submissions or number of solved problems.

These features enable LON-CAPA to provide many assessments tools for instructors as it

will be explained in the next section.

3.2 Feedback to the instructor from online homework

LON-CAPA has enabled instructors to efficiently create and distribute a wide variety

of educational materials, assignments, assessments, etc. These include numerous types of

formative conceptual and algorithmic exercises for which prompt feedback and assistance

can be provided to students as they work on assigned tasks. This section presents recent

developments that allow rapid interpretation of such data in identifying students'

misconceptions and other areas of difficulty, so that concurrent or timely corrective

action can be taken. This information also facilitates detailed studies of the educational

resources used and can lead to redesign of both the materials and the course.

3.2.1 Feedback tools

While several meta-analyses of the effects of assessment with immediate feedback to

the student on their learning are positive (Mason & Bruning, 2003; Azevedo & Bernard

1995), the range of effect size is considerable (Bonham et al., 2001), and can even be

negative (Mason & Bruning, 2003; Bransford et al., 2000; Kluger & DeNisi, 1996;

Kluger & DeNisi, 1998). Even within our own model systems CAPA, LectureOnline, and

LON-CAPA, when used just for homework, a range of partly contradictory observations

were made (Kotas, 2000; Pascarella, 2004). The timely feedback is crucial for ensuring

effective use.

 70

As it has been mentioned earlier LON-CAPA do record all information transmitted

to and from the student. That large amount of data, especially in large courses, is much

too voluminous for the faculty to interpret and use without considerable pre-processing.

We discuss functions that make that vast amount of data useful in a timely fashion. The

instructor can then give students useful feedback, either promptly enough that student can

benefit while still working on current task, or at a later date to clarify misconceptions and

address lack of understanding. A preliminary report on some of this work was presented

in Albertelli et al., (2002).

LON-CAPA outperforms many web-based education systems in three important

aspects relevant to the current discussion.

1. The first is its ability to individualize problems, both algorithmic numerical

exercises as well as problems that are qualitative and conceptual so that

numbers, options, images, etc. differ from student to student. (Kashy et al.,

1995).

2. The second is in the tools provided that allow instructor to collaborate in the

creation and sharing of content in a fast and efficient manner, both within and

across institutions, thus implementing the initial goals of the WWW3.

3. And the third is its one-source multiple target capabilities: that is, its ability

to automatically transform one educational resource, for example a numerical

or conceptual homework question, into a format suitable for multiple uses.

3 See http://www.w3.org/History/19921103-hypertext/hypertext/WWW/Proposal.html and also
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/DesignIssues/Multiuser.html

 71

3.2.2 Student Evaluation

An important task of the feedback tools for the instructor is to help identify the

source of difficulties and the misconceptions students have about a topic. There are

basically three ways to look at such homework data: by student, by problem, or cross-

cutting (per student, per problem).

The amount of data gathered from large enrollment courses (200-400 students) with

over 200 randomizing homework problems, each of them allowing multiple attempts, can

be overwhelming. Figure 3.6 shows just a small excerpt of the homework performance in

an introductory physics course, students in the rows, problems in the columns, each

character representing one online homework problem for one student. A number shown is

the number of attempts it took that particular student to get that particular problem correct

(“*” means more than nine attempts), “.” denotes an unsolved problem, blank an un-

attempted problem. This view is particularly useful ahead of the problem deadline,

where columns with a large number of dots or blank spaces indicate problems that the

students have difficulties with.

 72

1..9: correct by student in 1..9 submissions *: correct by student in more than 9 submissions
+: correct by override -: incorrect by override
.: incorrect attempted #: ungraded attempted
‘ ‘: not attempted x: excused

Figure 3.6 A small excerpt of the performance overview for a small
introductory physics class

We extract from student data some reports of the current educational situation of

every student as shown in table 3.1. A ‘Y’ shows that the student has solved the problem

and an ‘N’ shows a failure. A ‘-‘ denotes an un-attempted problem. The numbers in the

right column show the total number of submissions of the student in solving the

corresponding problems.

 73

Table 3.1 A sample of a student homework results and submissions

For a per-student view, each of the items in the table in Figure 3.6 is clickable and

shows both the students’ version of the problem (since each is different), and their

previous attempts. Figure 3.7 is an example of this view, and indicates that in the

presence of a medium between the charges, the student was convinced that the force

would increase, but also that this statement was the one he was most unsure about: His

first answer was that the force would double; no additional feedback except “incorrect”

was provided by the system. In his next attempt, he would change his answer on only this

one statement (indicating that he was convinced of his other answers) to “four times the

force” – however, only ten seconds passed between the attempts, showing that he was

merely guessing by which factor the force increased.

 74

 Figure 3.7 Single-student view of a problem

The per-problem view Figure 3.8 shows which statements were answered

correctly course-wide on the first and on the second attempt, respectively, the graphs on

the right which other options the students chose if the statement was answered

incorrectly. Clearly, students have the most difficulty with the concept of how a medium

acts between charges, with the absolute majority believing the force would increase, and

about 20% of the students believing that the medium has no influence – this should be

dealt with again in class.

 75

Figure 3.8 Compiled student responses to a problem

The simplest function of the statistics tools in the system is to quickly identify areas

of student difficulties. This is done by looking at the number of submissions students

require in reaching a correct answer, and is especially useful early after an assignment is

given. A high degree of failure indicates the need for more discussion of the topic before

the due date, especially since early responders are often the more dedicated and capable

students in a course. Sometimes a high degree of failure has been the result of some

ambiguity in wording or, mostly in newly authored problem resources, the result of errors

in their code. Difficulty is then ‘sky high’. Quick detection allows correction of the

resource, often before most students have begun the assignment. Figure 3.9 shows a plot

of the ratio of number of submissions to number of correct responses for 17 problems,

 76

from a weekly assignment before it was due. About 15% of the 400 students in an

introductory physics course had submitted part or most of their assignment.

Figure 3.9 One Early Measure of a Degree of Difficulty

The data of Figure 3.9 is also available as a table which also lists the number of

students who have submissions on each problem. Figure 3.9 shows that five of the

questions are rather challenging, each requiring more than 4 submissions per success on

average. Problem 1 requires a double integral in polar coordinates to calculate a center of

mass. Problem 14 is a qualitative conceptual question with six parts and where it is more

likely that one part or another will be missed. Note that incorrect use of a calculator or

incorrect order of operation in a formula would not be detected in Figure 3.9 because of

their relatively low occurrence. Note also that an error in the unit of the answer or in the

formatting of an answer is not counted as a submission. In those instances, students re-

enter their data with proper format and units, an important skill that students soon acquire

without penalty.

 77

3.2.3 Conceptual Problems

An important task of the feedback tools for the instructor is to help identify the

source of difficulty in numerical algorithmic questions, but it also allows for the

identification of misconceptions students may have on qualitative questions. Student

responses to two qualitative exercises, one from physics and the second from vector

math, illustrate the way that the analysis tool detects difficulties and their source, specific

misconceptions. The physics question is Problem 14 from assignment 8 (Figure 3.12),

which as indicated above, had five days before it was due. As shown in Figure 3.9 that

problem averaged at that time slightly more than 4 submissions per successful solution.

There were 50 correct solutions as a result of 208 submissions by 74 students. The order

in which the six statements are presented varies among students. Each statement is

selected randomly from one of the six concept groups. Each concept group focuses on a

particular aspect in the question. Success rate on each concept for the initial submission

is shown in Figure 3.10.

 78

Figure 3.10 Success (%) in Initial Submission for Selecting the Correct Answer

to Each of Six ‘Concept’ Statements

While concept ‘3’ is quite clearly the most misunderstood, there is also a large error

rate for concepts ‘2’, 4’ and ‘6’. About one third of the students succeeded on their first

submission for all six concepts groups and thus earned credit on their first submission.

This can be seen by looking at the decreasing number of submissions from Figure 3.10 to

Figure 3.11. Note the pattern in the initial submissions persists in subsequent submissions

with only minor changes.

 79

Figure 3.11 Success Rate on Second and Third Submissions for Answers to

Each of Six ‘Concept’ Statements

The text of the problem corresponding to the data in Figures 3.10 and 3.11 is shown

in Figure 3.12.

 Figure 3.12 Randomly Labeled Conceptual Physics Problem

 80

The labels in the problem are randomly permuted. In the version of the problem

shown in Figure 3.12 the first question is to compare tension Tz to Ty. It is the most

commonly missed statement, corresponding to concept ‘3’ of Figures 3.10 and 3.11. The

incorrect answer given by over 90% of the students is that the two tensions are equal,

which would be the answer for a pulley with negligible mass. That had been the case in

an assignment two weeks earlier. This error was addressed by discussion in lecture and

by a demonstration showing the motion for a massive pulley with unequal masses. This

quickly impacted the subsequent response pattern. Note that solutions to the versions of

the problems use as illustrations are given at the end of this section. (Solution to Figure

3.12: 1-less, 2-greater, 3-less, 4-equal, 5-true, 6-greater)

The next example is shown in Figure 3.13. It deals with the addition of two vectors.

The vectors represent the possible orientations and rowing speed of a boat and the

velocity of water. Here also the labeling is randomized so both the image and the text

vary for different students. Students are encouraged to discuss and collaborate, but cannot

simply copy from each other (Solution to Figure 3.13: 1-less, 2-greater, 3-less, 4-equal, 5-

greater).

 81

 Figure 3.13 Vector Addition Concept Problem

The upper graphic of Figure 3.14 shows once again the success rate of 350 students

on their initial submission, but this time in more detail showing all the possible

statements. There are two variations for the first three concepts and four for the last two.

The lower graph in Figure 3.14 illustrates the distribution of incorrect choices for the

282 students who did not get earn credit for the problem on their first submission. The

stacked bars show the way each statement was answered incorrectly. This data gives

support to the ‘concept group’ method, not only in the degree of difficulty within a group

as reflected by the Percent Correct in Figure 3.14, but also by the consistency of the

misconception as seen from the Incorrect Choice distribution. Statements 3 and 4 in

 82

Figure 3.14 present ‘Concept 2’, that greater transverse velocities result in a shorter

crossing time, with the vectors in reverse order. Statement 3 reads ‘Time to row across

for K is for C’, and statement 4 is ‘Time to row across for C is for K’. Inspection of

the graph indicates the students made the same error, assuming the time to row across for

K is less than the time to row across for C, regardless of the manner in which the question

was asked. Few students believed the quantities to be equal. In concept group 3,

statements 7, 8, 9 and 10, “equal to” is predominantly selected instead of ‘greater than’ or

‘less than’ as appropriate. This detailed feedback makes it easier for the instructor to

provide help so that students discover their misconceptions. Finally, as in the previously

discussed numerical example, particular hints can be displayed, triggered by the response

selected for a statement or by triggered by a combination of responses for several

statements.

 83

 Figure 3.14 Upper Section: Success Rate for Each Possible Statement. Lower

Section: Relative distribution of Incorrect Choices, with Dark Gray as “greater
than”, Light Gray as “Less Than” and Clear as “Equal to”

3.2.4 Homework and Examination Problem Evaluation

The same source code which is used to present problems for on-line homework can

also generate them for an on-line examination or for a printed version suitable for a

proctored bubble sheet examination which is later machine scored (Albertelli et al.,

2003).

LON-CAPA can provide statistical information about every problem in a table (see

Table 3.2), which is called “Stats Table”. Every part of a multi-part problem is

distinguished as a separate problem. The multi-instance problem is also considered

separately, because a particular problem or one part of it might be used in different

homework sets. Finally, a table is created which includes all computed information from

 84

all students, sorted according to the problem order. In this step, LON-CAPA has provided

the following statistical information:

1. #Stdnts: Total number of students who take a look at the problem.(Let

#Stdnts is equal to n)

2. Tries: Total number of submissions to solve the problem (∑
=

n

i
ix

1
where ix denote

a student try).

3. Mod: Mode, maximum number of submissions for solving the problem.

4. Mean: Average number of the submissions. x = ∑
=

n

i
ix

n 1

1

5. #YES: Number of students solved the problem correctly.

6. #yes: Number of students solved the problem by override.

Sometimes, a student gets a correct answer after talking with the instructor. This type

of correct answer is called “corrected by override".

7. %Wrng: Percentage of students tried to solve the problem but still incorrect.

()
n

yesYESn)#(#*100 +−

8. S.D.: Standard Deviation of the students’ submissions.

∑
=

−
−

n

i
i xx

n 1

2)(
1

1

 85

Table 3.2 Statistics table includes general statistics of every problem of the
course (Homework Set 1)

Homework Set
Order #Stdnts Tries Mod Mean #YES %Wrng DoDiff S.D. Skew. D.F.

1st
D.F.
2nd

Calculator Skills 256 267 3 1.04 256 0.0 0.04 0.2 5.7 0.03 0.00
Numbers 256 414 17 1.62 255 0.4 0.38 1.6 5.7 0.11 0.02
Speed 256 698 13 2.73 255 0.4 0.63 2.2 1.9 0.06 0.02
Perimeter 256 388 7 1.52 255 0.4 0.34 0.9 2.4 -0.00 0.02
Reduce a
Fraction 256 315 4 1.23 256 0.0 0.19 0.5 2.3 0.01 0.00

Calculating with
Fractions 256 393 7 1.54 255 0.4 0.35 0.9 2.0 0.15 0.02

Area of a Balloon 254 601 12 2.37 247 2.8 0.59 1.8 1.8 -0.05 -0.02
Volume of a
Balloon 252 565 11 2.24 243 3.6 0.57 1.9 2.0 -0.06 -0.03

Units 256 1116 20 4.36 246 3.9 0.78 4.2 1.9 0.18 0.03
Numerical Value
of Fraction 256 268 4 1.05 256 0.0 0.04 0.2 3.4 0.01 .00
Vector versus
Scalar 254 749 11 2.95 251 1.2 0.66 2.2 1.1 -0.05 -0.05

Adding Vectors 253 1026 20 4.06 250 1.2 0.76 3.6 1.8 0.14 0.00
Proximity 249 663 19 2.66 239 3.6 0.64 2.3 2.8 0.11 -0.10

9. Skew.: Skewness of the students’ submissions.

() 3

1

2

1

3

3
1

3

)(
1

1

)(1

..

)(1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

−
=

−

∑

∑∑

=

==

n

i
i

n

i
i

n

i
i

xx
n

xx
n

DS

xx
n

10. DoDiff: Degree of Difficulty of the problem.

()
∑ =

+
− n

i ix
yesYES

1

##1

Clearly, the Degree of Difficulty is always between 0 and 1. This is a useful factor

for an instructor to determine whether a problem is difficult, and the degree of this

difficulty. Thus, DoDiff of each problem is saved in its meta data.

 86

11. DoDisc: Degree of Discrimination4 (or Discrimination Factor) is a standard

for evaluating how much a problem discriminates between the upper and the

lower students. First, all of the students are sorted according to a criterion. Then,

27% of upper students and 27% lower students are selected from the sorted

students applying the mentioned criterion. Finally we obtain the Discrimination

Factor from the following difference:

Applied a criterion in 27% upper students - Applied the same Criterion in 27% lower

students.

Discrimination Factor is a number in interval [-1,1]. If this number is close to 1, it

shows that only upper students have solved this problem. If it is close to 0 it shows that

the upper students and the lower students are approximately the same in solving the

problem. If this number is negative, it shows that the lower students have more success in

solving the problem, and thus this problem is very poor in discriminating the upper and

lower students.

We compute the Discrimination Factor from two criteria:

 1st Criterion for Sorting the Students:
∑

∑
=

n

i ix
1

 AwardedCredit Partial

2nd Criterion for Sorting the Students:
∑

∑
=

+
n

i ix

yesYES

1

)##(

These measures can also be employed for evaluating resources used in examinations.

Examinations as assessment tools are most useful when the content includes a range of

difficulty from fairly basic to rather challenging problems. An individual problem within

4 This name has been given by administration office of Michigan State University for evaluating the
exams’ problem. Here we expanded this expression to homework problems as well.

 87

an examination can be given a difficulty index (DoDiff) simply by examining the class

performance on that problem. Table 3.3 shows an analysis for the first two mid-term

examinations in Spring 2004.

Table 3.3 Analysis of Examination Problems (N=393) DoDiff = Difficulty Index
DoDisc = Discrimination Index

DoDiff DoDisc DoDiff DoDisc Problem Number
Exam 1 Exam 1 Exam 2 Exam 2

1 0.2 0.4 0.7 0.24
2 0.16 0.31 0.13 0.2
3 0.4 0.4 0.19 0.31
4 0.44 0.57 0.41 0.57
5 0.32 0.38 0.52 0.11
6 0 0 0.18 0.26
7 0.23 0.33 0.7 0.36
8 0.21 0.24 0.57 0.35
9 0.36 0.63 0.55 0.58
10 0.4 0.59 0.87 0.14

We can see that Exam 1 was on the average somewhat less difficult than Exam 2.

Problem 10 in Exam 2 has DoDisc=0.14 and DoDiff=0.87, indicating it was difficult for

all students. The students did not understand the concepts involved well enough to

differentiate this problem from a similar problem they had seen earlier. In Exam 1,

problems 3, 4, 9, and 10 are not too difficult and nicely discriminating. One striking entry

in Table 3.3 is for problem 6 in Exam 1. There both DoDiff and DoDisc are 0. No

difficulty and no discrimination together imply a faulty problem. As a result of this

situation, a request was submitted to modify LON-CAPA so that in the future an

instructor will be warned of such a circumstance.

The distribution of scores on homework assignments differs considerably from that

on examinations. This is clearly seen in Figure 3.15.

 88

Figure 3.15 Grades on the first seven homework assignments and on the first

two midterm examinations

The correlation of homework and examinations is moderate (r=0.43). Students with a

good exam score tend to score high on homework but the reverse is not as true. This can

be seen in the 3-D plot of the Figure 3.15 data in Figure 3.16. Homework grades peak

near 100% as motivated students tend to repeat problems until a correct solution is

obtained.

Students also often interpret a high homework grade as indication that they are doing

well in the course. To counter that misconception, a readily accessible on-line grade

extrapolator provides students a review of their performance to date in the various

components of the class, quizzes, mid term exams, and homework. They enter their own

estimate of their future performance for the remainder of the semester, as well as for the

final examination. This tool then projects a final grade, thus keeping students aware of

their progress. As a result of feedback on students’ work, those doing very poorly can be

identified quite early (Minaei et al., 2003; Thoennessen et al., 1999).

 89

Figure 3.16 Homework vs. Exam Scores. The highest bin has 18 students.

3.3 Summary

LON-CAPA provides instructors or course coordinators full access to the students’

educational records. With this access, they are able to evaluate the problems presented in

the course after the students have used the educational materials, through some statistical

reports. LON-CAPA also provides a quick review of students’ submissions for every

problem in a course. The instructor may monitor the number of submissions of every

student in any homework set and its problems. The total numbers of solved problems in a

homework set as compared with the total number of solved problems in a course are

represented for every individual student.

LON-CAPA reports a large volume of statistical information for every problem e.g.,

“total number of students who open the problem,” “total number of submissions for the

problem,” “maximum number of submissions for the problem,” “average number of

 90

submissions per problem,” “number of students solving the problem correctly,” etc. This

information can be used to evaluate course problems as well as the students. More details

can be found in Albertelli et al. (2002) and Hall et al. (2004). Aside from these

evaluations, another valuable use of data will be discussed in the next chapter.

 91

Chapter 4 Predicting Student Performance

The objective in this chapter is to predict the students’ final grades based on the

features which are extracted from their (and others’) homework data. We design,

implement, and evaluate a series of pattern classifiers with various parameters in order to

compare their performance in a real data set from the LON-CAPA system. This

experiment provides an opportunity to study how pattern recognition and classification

theory could be put into practice based on the logged data in LON-CAPA. The error rate

of the decision rules is tested on one of the LON-CAPA data sets in order to compare the

performance accuracy of each experiment. Results of individual classifiers, and their

combination, as well as error estimates, are presented.

The problem is whether we can find the good features for classifying students! If so,

we would be able to identify a predictor for any individual student after doing a couple of

homework sets. With this information, we would be able to help a student use the

resources better.

The difficult phase of the experiment is properly pre-processing and preparing the

data for classification. Some Perl modules were developed to extract and segment the

data from the logged database and represent the useful data in some statistical tables and

graphical charts. More details of these tasks have been explained in a part of previous

chapter which is dedicated for data acquisition and data representation.

 92

4.1 Data set and Class Labels

As the first step in our study, in order to have an experiment in student classification,

we selected the student and course data of a LON-CAPA course, PHY183 (Physics for

Scientists and Engineers I), which was held at MSU in spring semester 2002. Then we

extend this study to more courses. This course integrated 12 homework sets including

184 problems. About 261 students used LON-CAPA for this course. Some of the students

dropped the course after doing a couple of homework sets, so they do not have any final

grades. After removing those students, 227 valid samples remained. You can see the

grade distribution of the students in the following chart (Figure 4.1)

0 10 20 30 40 50 60

of students

0.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

G
ra

d
e

Grade Distribution

Figure 4.1 Graph of distribution of grades in course PHY183 SS02

 93

We can group the students regarding their final grades in several ways, 3 of which

are:

1. The 9 possible class labels can be the same as students’ grades, as shown in Table

4.1.

2. We can group them into three classes, “high” representing grades from 3.5 to 4.0,

“middle” representing grades from 2.5 to 3, and “low” representing grades less

than 2.5, as shown in table 4.2.

3. We can also categorize students with one of two class labels: “Passed” for grades

above 2.0, and ”Failed” for grades less than or equal to 2.0, as shown in table 4.3.

Table 4.1. 9-Class labels regarding students’ grades in course PHY183_ SS02

Class Grade # of Student Percentage
1 0.0 2 0.9%
2 0.5 0 0.0%
3 1.0 10 4.4%
4 1.5 28 12.4%
5 2.0 23 10.1%
6 2.5 43 18.9%
7 3.0 52 22.9%
8 3.5 41 18.0%
9 4.0 28 12.4%

Table 4.2. 3-Class labels regarding students’ grades in course PHY183 SS02

Class Grade Student # Percentage
High Grade >= 3.5 69 30.40%

Middle 2.0 < Grade < 3.5 95 41.80%
Low Grade <= 2.0 63 27.80%

Table 4.3. 2-class labels regarding students’ grades in course PHY183 SS02

Class Grade Student # Percentage
Passed Grade > 2.0 164 72.2%
Failed Grade <= 2.0 63 27.80%

 94

We can predict that the error rate in the first class grouping should be higher than the

others, because the sample size among the 9-Classes differs considerably.

The present classification experiment focuses on the first six extracted students’

features based on the PHY183 Spring 2002 class data.

1. Total number of correct answers. (Success rate)

2. Getting the problem right on the first try, vs. those with high number of

submissions. (Success at the first try)

3. Total number of attempts before final answer is derived

4. Total time that passed from the first attempt, until the correct solution was

demonstrated, regardless of the time spent logged in to the system. Also, the

time at which the student got the problem correct relative to the due date.

Usually better students get the homework completed earlier.

5. Total time spent on the problem regardless of whether they got the correct

answer or not. Total time that passed from the first attempt through

subsequent attempts until the last submission was demonstrated.

6. Participating in the communication mechanisms, vs. those working alone.

LON-CAPA provides online interaction both with other students and with the

instructor.

 95

4.2 Classifiers

Pattern recognition has a wide variety of applications in many different fields;

therefore it is not possible to come up with a single classifier that can give optimal results

in each case. The optimal classifier in every case is highly dependent on the problem

domain. In practice, one might come across a case where no single classifier can perform

at an acceptable level of accuracy. In such cases it would be better to pool the results of

different classifiers to achieve the optimal accuracy. Every classifier operates well on

different aspects of the training or test feature vector. As a result, assuming appropriate

conditions, combining multiple classifiers may improve classification performance when

compared with any single classifier.

4.2.1 Non-tree based classifiers

We compare some popular non-parametric pattern classifiers and a single parametric

pattern classifier according to their error estimates. Six different classifiers over one of

the LON-CAPA data sets are compared. The classifiers used include Quadratic Bayesian

classifier, 1-nearest neighbor (1-NN), k-nearest neighbor (k-NN), Parzen-window, multi-

layer perceptron (MLP), and Decision Tree.5 These classifiers are some of the most

common classifiers used in practical classification problems. After some preprocessing

operations were made on the data set, the error rate of each classifier is reported. Finally,

to improve performance, a combination of classifiers is presented.

5 The first five classifiers are coded in MATLABTM 6.0, and for the decision tree classifiers we have use
some available software packages such as C5.0, CART, QUEST, CRUISE. We will discuss the Decision
Tree-based software in the next section. In this section we deal with non-tree classifiers.

 96

4.2.1.1 Combination of Multiple Classifiers (CMC)

In combining multiple classifiers we seek to improve classification accuracy. There

are different ways one can think of combining classifiers:

 The simplest way is to find the overall error rate of the classifiers and choose

the one which has the lowest error rate for the given data set. This is called an

offline CMC. This may not really seem to be a CMC; however, in general, it

has a better performance than individual classifiers. The output of this

combination will simply be the best performance in each column in Figures

4.3 and 4.5.

 The second method, which is called online CMC, uses all the classifiers

followed by a vote. The class getting maximum votes from the individual

classifiers will be assigned to the test sample. This method seems, intuitively,

to be better than the previous one. However, when we actually tried this on

some cases of our data set, the results were not more accurate than the best

result from the previous method. Therefore, we changed the rule of majority

vote from “getting more than 50% of the votes” to “getting more than 75% of

the votes”. We then noticed a significant improvement over offline CMC.

Table 4.6 shows the actual performance of the individual classifier and online

CMC over our data set.

 Woods et al. (1995) suggest a third method, which is called DSC-LA

(Dynamic Selection of Classifiers based on the Local Accuracy estimates).

This method takes a particular test sample, investigates the local

 97

neighborhood of that sample using all the individual classifiers and the one

which performs best is chosen for the decision-making6.

Besides CMC, we also show the outcomes for an “Oracle” which chooses the correct

results if any of the classifiers classified correctly, as Woods et al. (1995) has presented

in their article.

4.2.1.2 Normalization

Having assumed in Bayesian and Parzen-window classifiers that the features are

normally distributed, it is necessary that the data for each feature be normalized. This

ensures that each feature has the same weight in the decision process. Assuming that the

given data is conforms to a Gaussian distribution; this normalization is performed using

the mean and standard deviation of the training data. In order to normalize the training

data, it is necessary first to calculate the sample mean, µ , and the standard deviation, σ ,

of each feature (column) in the data set, and then normalize the data using the following

equation:

σ
µ−

= i
i

xx (4.1)

This ensures that each feature of the training data set has a normal distribution with a

mean of zero and a standard deviation of one. In addition, the kNN method requires

normalization of all features into the same range. However, we should be cautious in

using the normalization before considering its effect on classifiers’ performances. Table

6 We have not implemented this method in this proposal yet.

 98

4.4 shows a comparison of Error Rate and Standard Deviation, using the classifiers in

both normalized and un-normalized data in the case of 3 classes.

Table 4.4 Comparing Error Rate of classifiers with and without normalization
in the case of 3 classes

3-Classes With Normalization Without Normalization
Classifier Error rate S.D Error rate S. D.

Bayes 0.4924 0.0747 0.5528 0.0374

1NN 0.5220 0.0344 0.5864 0.041
KNN 0.5144 0.0436 0.5856 0.0491

Parzen 0.5096 0.0408 0.728 0
MLP 0.4524 0.0285 0.624 0
CMC 0.2976 0.0399 0.3872 0.0346
Oracle 0.1088 0.0323 0.1648 0.0224

Thus, we tried the classifiers with and without normalization. Table 4.4 clearly

shows a significant improvement in most classification results after normalization. Here

we have two findings:

1. The Parzen-Window classifier and MLP do not work properly without normalizing

the data. Therefore, we have to normalize data when using these two classifiers.

2. Decision tree classifiers do not show any improvement on their classification

performance after normalization, so we ignore it in using tree classifiers. We will

study the decision tree classifier later, though the Decision Tree classifiers’ results

are not introduced in Table 4.4.

4.2.1.3 Comparing 2-fold and 10-fold Cross-Validation

In k-fold cross-validation, we divide the data into k subsets of approximately equal

size. We train the data k times, each time leaving out one of the subsets from training, but

 99

using only the omitted subset to compute the error threshold of interest. If k equals the

sample size, this is called "Leave-One-Out" cross-validation. (Duda et al. 2001; Kohavi,

1995). Leave-One-Out cross-validation provides an almost unbiased estimate of true

accuracy, though at a significant computational cost. In this proposal both 2-fold and 10-

fold cross validation are used.

In 2-fold cross-validation, the order of the observations, both training and test, are

randomized before every trial of every classifier. Next, every sample is divided amongst

the test and training data, with 50% going to training, and the other 50% going to test.

This means that testing is completely independent, as no data or information is shared

between the two sets. At this point, we classify7 the test sets after the training phase of all

the classifiers. We repeat this random cross validation ten times for all classifiers.

In 10-fold cross-validation, the available data (here, the 227 students’ data) are

divided into 10 blocks containing roughly equal numbers of cases and class-value

distributions. For each block (10% of data) in turn, a model is developed using the data in

the remaining blocks (90% of data, the training set), and then it is evaluated on the cases

in the hold-out block (the test set). When all the tests (10 tests) are completed, each

sample in the data will have been used to test the model exactly once. The average

performance on the tests is then used to predict the true accuracy of the model developed

from all the data. For k-values of 10 or more, this estimate is more reliable and is much

more accurate than a re-substitution estimate.

7 All the code was written in MATLABTM 6.5

 100

Table 4.5 Comparing Error Rate of classifiers 2-fold and 10-fold Cross-
Validation in the case of 3 classes

3-Classes 10-fold Cross-Validation 2-fold Cross-Validation
Classifier Error Rate S.D. Error Rate S.D.

Bayes 0.5 0.0899 0.5536 0.0219
1NN 0.4957 0.0686 0.5832 0.0555
KNN 0.5174 0.0806 0.576 0.0377

Parzen 0.5391 0.085 0.4992 0.036
MLP 0.4304 0.0806 0.4512 0.0346
CMC 0.313 0.084 0.3224 0.0354

Oracle 0.1957 0.0552 0.1456 0.0462

Table 4.5 shows comparison of Error Rate and Standard Deviation using the

classifiers in both 2-fold and 10-fold cross-validation in the case of the 3-Classes. You

can see that the 10-fold cross-validation in relation to individual classifier has slightly

more accurate than 2-fold cross validation, but in relation to combination of classifiers

(CMC) there is no a significant difference. Nonetheless, we selected 10-fold cross

validation for error estimation in this proposal.

4.2.1.4 Results, Error Estimation

The experimental results were averaged and are presented in the charts below. They

show the effect of selecting the data randomly on the average error rate. The average

error rate and its standard deviation, which is associated with each classifier, is shown in

the tables as well as the chart. Each table summarizes the results of all the classifiers on

our data set.

 101

Figure 4.2: Comparing Error Rate of classifiers with 10-fold Cross-Validation

in the case of 2-Classes

The standard deviation of error rate shows the variance of the error rate during cross

validation. The error rate is measured in each round of cross validation by:

examples test ofnumber Total
 examples test of fiedmissclassi Total roundeach in RateError =

After 10 rounds, the average error rate and its standard deviation are computed and

then plotted. This metric was chosen due to its ease of computation and intuitive nature.

Figure 4.2 and 4.3 show the comparison of classifiers’ error rate when we classify the

students into two categories, “Passed” and “Failed”. The best performance is for kNN

with 82% accuracy, and the worst classifier is Parzen-window with 75% accuracy. CMC

in the case of 2-Classes classification has 87% accuracy.

 102

LON-CAPA, Classifiers Camparison on PHY183 SS02,
10-fold Cross-Validation, 2 Classes

0

0.05

0.1

0.15

0.2

0.25

0.3

Average Error Rate 0.2364 0.2318 0.1773 0.25 0.2045 0.1318 0.0818

Standard Deviation 0.0469 0.0895 0.0725 0.089 0.0719 0.0693 0.0559

Bayes 1NN KNN Parzen MLP CMC Oracle

Figure 4.3: Table and graph to compare Classifiers’ Error Rate, 10-fold CV in

the case of 2-Classes

It is noticeable that these processes were done after we had found the optimal k in the

kNN algorithm and after we had tuned the parameters in MLP and after we had found the

optimal h in the Parzen-window algorithm. Finding the best k for kNN is not difficult,

and its performance is the best in the case of 2-Classes, though is not as good as the other

classifiers in the case of 3-Classes, as is shown in Figure 4.4.

 103

Figure 4.4: Comparing Error Rate of classifiers with 10-fold Cross-Validation in the

case of 3-Classes

Working with Parzen-window classifier is not as easy because finding the best width

for its window is not straitforward. The MLP classifier is the most difficult classifier to

work with. Many parameters have to be set properly to make it work optimally. For

example, after many trials and errors we found that the structure of the network in the

case of 3-classes, the 4-3-3 (one hidden layer with 3 neurons in hidden layer) works

better, and in the case of 2-classes, if we have 2 hidden layer with 2 or 4 neurons in each

hidden layer, would lead to a better performance. There is no algorithm to set the number

of epochs and learning rates in the MLP. However, sometimes MLP has the best

performance in our data set. As shown in the Table 4.6, MLP is slightly better than the

other individual classifier. In the case of 9-Classes we could not set the MLP to work

 104

properly, so we have not brought the result of MLP classifier into the final result in table

4.6.

LON-CAPA, Classifiers Comparison on PHY183 data set,
10-fold Cross-Validation, 3 classes

0

0.1

0.2

0.3

0.4

0.5

0.6

Average Error Rate 0.5143 0.4952 0.4952 0.519 0.4905 0.2905 0.1619

Standard Deviation 0.1266 0.0751 0.0602 0.1064 0.1078 0.0853 0.0875

Bayes 1NN KNN Parzen MLP CMC Oracle

Figure 4.5 Comparing Classifiers’ Error Rate, 10-fold CV in the case of 3-Classes

As predicted before, the error rate in the case of 9-Classes is much higher than in

other cases. The final results of the five classifiers and their combination in the case of 2-

Classes, 3-Classes, and 9-Classes are shown in Table 4.6.

In the case of 9-Classes, 1-NN works better than the other classifiers. Final results in

Table 4.6 show that CMC is the most accurate classifier compared to individual

classifiers. In the case of 2-Classes it improved by 5%, in the case of 3-Classes it

improved by 20%, and in the case of 9-Classes it improved by 22%, all in relation to the

best individual classifiers in the corresponding cases.

 105

Table 4.6: Comparing the Performance of classifiers, in all cases: 2-Classes, 3-
Classess, and 9-Classes, Using 10-fold Cross-Validation in all cases.

 Error Rate
Classifier 2-Classes 3-Classes 9-Classes

Bayes 0.2364 0.5143 0.77
1NN 0.2318 0.4952 0.71
KNN 0.1773 0.4952 0.725

Parzen 0.25 0.519 0.795
MLP 0.2045 0.4905 -
CMC 0.1318 0.2905 0.49

Oracle 0.0818 0.1619 -

One important finding is that when our individual classifiers are working well and

each has a high level of accuracy; the benefit of combining classifiers is small. Thus,

CMC has little improvement in classification performance while it has a significant

improvement in accuracy when we have weak learner8 classifiers.

We tried to improve the classification efficiency by stratifying the problems in

relation to their degree of difficulty. By choosing some specific conceptual subsets of the

students’ data, we did not achieve a significant increase in accuracy with this parameter.

In the next section, we explain the results of decision tree classifiers on our data set,

while also discussing the relative importance of student-features and the correlation of

these features with category labels.

4.2.2 Decision Tree-based software

Decision trees have proved to be valuable tools for the description, classification and

generalization of data. Many users find decision trees easy to use and understand. As a

result, users more easily trust decision tree models than they do "black box" models, such

8 “Weak learner” means that the classifier has accuracy only slightly better than chance (Duda et al., 2001)

 106

as models produced by neural networks. Many tools and software have been developed to

implement decision tree classification. Lim et al. (2000) has an insightful study about

comparison of prediction accuracy, complexity, and training time of thirty-three

classification algorithms; twenty-two decision trees, nine statistical and two neural

network algorithms are compared on thirty-two data sets in terms of classification

accuracy, training time, and (in the case of trees) number of leaves. In this proposal we

used C5.0, CART, QUEST, and CRUISE software to test tree-based classification. Some

statistical software is employed for multiple linear regression on our data set. First we

have a brief view of the capabilities, features and requirements of these software

packages. Then we gather some of the results and compare their accuracy to non-tree

based classifiers.

4.2.2.1 C5.0

Decision tree learning algorithms, for example, ID3, C5.0 and ASSISTANT (Cestnik

et al., 1987), search a completely expressive hypothesis space and are used to

approximate discrete valued target functions represented by a decision tree. In our

experiments the C5.0 inductive learning decision tree algorithm was used. This is a

revised version9 of C4.5 and ID3 (Quinlan 1986, 1993) and includes a number of

additional features. For example, the Boosting option causes a number of classifiers to be

constructed - when a case is classified, all of these classifiers are consulted before making

a decision. Boosting will often give a higher predictive accuracy at the expense of

9 It is the commercial version of the C4.5 decision tree algorithm developed by Ross Quinlan. See5/C5.0
classifiers are expressed as decision trees or sets of if-then rules. RuleQuest provides C source code so that
classifiers constructed by See5/C5.0 can be embedded in your own systems.

 107

increased classifier construction time. For our experiments, however, data set boosting

was not found to improve prediction accuracy.

When a continuous feature is tested in a decision tree, there are branches

corresponding to the conditions: “Feature Value ≤ Threshold” and “Feature Value >

Threshold,” for some threshold chosen by C5.0. As a result, small movements in the

feature value near the threshold can change the branch taken from the test. There have

been many methods proposed to deal with continuous features (Quinlan, 1988; Chan et

al., 1992; Ching et al., 1995). An option available in C5.0 uses fuzzy thresholds to soften

this knife-edge behavior for decision trees by constructing an interval close to the

threshold. This interval plays the role of margin in neural network algorithms. Within this

interval, both branches of the tree are explored and the results combined to give a

predicted class.

Decision trees constructed by C5.0 are post pruned before being presented to the

user. The “Pruning Certainty Factor” governs the extent of this simplification. A higher

value produces more elaborate decision trees and rule sets, while a lower value causes

more extensive simplification. In our experiment a certainty factor of 25% was used. If

we change the certainty factor, we may obtain different results.

C5.0 needs four types of files for generating the decision tree for a given data set, out

of which two files are optional:

The first file is the .names file. It describes the attributes and classes. The first line of

the .names file gives the classes, either by naming a discrete attribute (the target attribute)

that contains the class value, or by listing them explicitly. The attributes are then defined

 108

in the order that they will be given for each case. The attributes can be either explicitly or

implicitly defined. The value of an explicitly defined attribute is given directly in the

data. The value of an implicitly-defined attribute is specified by a formula. In our case,

data attributes are explicitly defined.

The second file is the .data file. It provides information on the training cases from

which C5.0 will extract patterns. The entry for each case consists of one or more lines

that give the values for all explicitly defined attributes. The '?' is used to denote a value

that is missing or unknown. Our data set had no missing features. Also, 'N/A' denotes a

value that is not applicable for a particular case.

The third file used by C5.0 consists of new test cases on which the classifier can be

evaluated and is the .test file. This file is optional and, if used, has exactly the same

format as the .data file. We gave a .test file for our data set.

The last file is the .costs file. In applications with differential misclassification costs,

it is sometimes desirable to see what affect costs have on the construction of the

classifier. In our case all misclassification costs were the same so this option was not

implemented.

After the program was executed on the PHY183 SS02 data set we obtained results

for both the training and testing data. A confusion matrix was generated in order to show

the misclassifications. The confusion matrices for three types of classification in our data

set that are, 2-Classes, 3-Classes and 9-Classes are in Appendix A. You can also find

some rule set samples resulted from the rule-set option in C5.0, as well as a part sample

of the tree produced by C5.0 in Appendix A.

 109

 Using 10-fold cross validation we got 79.3% accuracy in 2-Classes, 56.8%

accuracy in 3-Classes, 25.6% accuracy in 9-Classes.

One of the important and exciting experiments of C5.0 is to use a training, and test

set; and thus at least a 10-fold cross-validation to get a desirable result. For example, in

the case of 3-Classes, we might get approximately 75% accuracy in the training set, while

boosting might improve accuracy up to 90% or 95%. Unfortunately, this is overfitting, or

overtraning, and so we therefore would not be able to generalize these results or this

complex training model to test the unseen data because of overfitting.

4.2.2.2 CART

CART10 uses an exhaustive search method to identify useful tree structures of data. It

can be applied to any data set and can proceed without parameter setting. Comparing

CART analyses with stepwise logistic regressions or discriminant analysis, CART

typically performs better on the learning sample. Listed below are some technical aspects

of CART:

CART is a nonparametric procedure and does not require specification of a

functional form. CART uses a stepwise method to determine splitting rules, and thus no

advance selection of variables is necessary, although certain variables such as ID

numbers and reformulations of the dependent variable should be excluded from the

analysis. Also, CART’s performance can be enhanced by proper feature selection and

10 CART(tm) (Classification And Regression Trees) is a data mining tool exclusively licensed to Salford
Systems (http://www.salford-systems.com). CART is the implementation of the original program by
Breiman, Friedman, Olshen, and Stone. We used CART version 5.02 under windows for our classification.
Using CART we are able to get many interesting textual and graphical reports, some of which are presented
in Appendix A. It is noticeable that CART does not use any description files to work with. Data could be
read as a text file or any popular database or spreadsheet.

 110

creation of predictor variables. There is no need to experiment with monotone

transformations of the independent variables, such as logarithms, square roots or squares.

In CART, creating such variables will not affect the resulting trees unless linear

combination splits are used. Outliers among the independent variables generally do not

affect CART because splits usually occur at non-outlier values. Outliers in the dependent

variable are often separated into nodes where they no longer affect the rest of the tree.

CART does not require any preprocessing of the data. In particular, continuous variables

do not have to be recoded into discrete variable versions prior to analysis. While the

CART default is to split nodes on single variables, it will optionally use linear

combinations of non-categorical variables. For each split in the tree, CART develops

alternative splits (surrogates), which can be used to classify an object when the primary

splitting variable is missing. Thus, CART can be used effectively with data that has a

large fraction of missing values.

One of the advantages of CART is presenting the importance of independent

variables in predicting both classification mode and regression mode. Each variable in the

CART tree has an importance score based on how often and with what significance it

served as primary or surrogate splitter throughout the tree. The scores reflect the

contribution each variable makes in classifying or predicting the target variable, with the

contribution stemming from both the variable’s role in primary splits and its role as a

surrogate splitter (Dan and Colla, 1998). In Table 4.7 and 4.8, the importance of the six

features (independent variables) are scored in the case of 2-classes with Gini splitting

criterion and 3-classes with Entropy splitting criterion respectively.

 111

Table 4.7 Variable (feature) Importance in 2-Classes Using Gini Criterion

Variable
TOTCORR 100.00 ||

TRIES 56.32 |||||||||||||||||||||||
FIRSTCRR 4.58 |
TOTTIME 0.91

SLVDTIME 0.83
DISCUSS 0.00

Table 4.8 Variable (feature) Importance in 2-Classes, Using Entropy Criterion

Variable
TOTCORR 100.00 ||

TRIES 58.61 ||||||||||||||||||||||||
FIRSTCRR 27.70 |||||||||||
SLVDTIME 24.60 ||||||||||
TOTTIME 24.47 ||||||||||
DISCUSS 9.21 |||

The results in Tables 4.7 and 4.8 show that the most important feature (which has the

highest correlation with the predicted variables) is the “Total number of Correct

answers,” and the least useful variable is the “Number of Discussions.” If we consider the

economical aspect of computation cost, we can remove the less important features.

In our experiment, we used both 10-fold Cross-Validation and Leave-One-Out

method. We found that the error rates in training sets are not improved in the case of 2-

Classes and 3-Classes, but the misclassifications in the test sets are improved when we

switch from 10-fold Cross-Validation to Leave-One-Out. Yet, in the case of 9-Classes

both training and testing sets are improved significantly when switching occurs, as is

shown in Table 4.9 and 4.10. How can we interpret improvement variation between

classes?

 112

Table 4.9: Comparing the Error Rate in CART, using 10-fold Cross-Validation
in learning and testing set.

Splitting Criterion 2-Classes 3-Classes 9-Classes
 Training Testing Training Testing Training Testing

Gini 17.2% 19.4% 35.2% 48.0% 66.0% 74.5%
Symmetric Gini 17.2% 19.4% 35.2% 48.0% 66.0% 74.5%

Entropy 18.9% 19.8% 37.9% 52.0% 68.7% 76.2%
Twoing 17.2% 19.4% 31.3% 47.6% 54.6% 75.3%

Ordered Twoing 17.2% 20.7% 31.7% 48.0% 68.3% 74.9%

Table 4.10: Comparing the Error Rate in CART, using Leave-One-Out method
in learning and testing test.

Splitting Criterion 2-Classes 3-Classes 9-Classes
 Training Testing Training Testing Training Testing

Gini 17.2% 18.5% 36.6% 41.0% 46.7% 66.9%
Symmetric Gini 17.2% 18.5% 36.6% 41.0% 46.7% 66.9%

Entropy 17.2% 18.9% 35.2% 41.4% 48.0% 69.6%
Twoing 17.2% 18.5% 38.3% 40.1% 47.1% 68.7%

Ordered Twoing 18.9% 19.8% 35.2% 40.4% 33.9% 70.9%

Discussion of improvement variation:

In the case of 2-Classes, there is no improvement in the training phase and a slight

(1%) improvement in the test phase. It shows that we can have a more reliable model

with the Leave-One-Out method for student classification. It shows that the model we

obtained in training phase is approximately complete.

In the case of 3-Classes, when we switch from 10-fold to Leave-One-Out the results

in the training phase become slightly worse, but we achieve approximately 7.5%

improvement. It shows that our model was not complete in 10-fold for predicting the

unseen data. Therefore, it is better to use Leave-One-Out to get a more complete model

for classifying the students into three categories.

 113

In the case of 9-Classes when we switch from 10-fold to Leave-One-Out, the results

in both training and test sets improve significantly. However, we cannot conclude that

our new model is complete. This is because the big difference between the results in

training and testing phase shows that our model is suffering from overfitting. It means

that our training samples are not enough to construct a complete model for predicting the

category labels correctly; more data is required to come to an adequate solution.

After discussing the CART results it is worth noting that by using CART we are able

to produce many useful textual and graphical reports, some of which are presented in

Appendix A. In next section we discuss the other decision tree software results. One of

the advantages of CART is that it does not require any description files; therefore data

can be read as a text file or any popular database or spreadsheet file format.

4.2.2.3 QUEST, CRUISE11

QUEST is a statistical decision tree algorithm for classification and data mining. The

objective of QUEST is similar to that of the algorithm used in CART and described in

Breiman, et al. (1984). The advantages of QUEST are its unbiased variable selection

technique by default, its use of imputation instead of surrogate splits to deal with missing

values, and its ability to handle categorical predictor variables with many categories. If

there are no missing values in the data, QUEST can use the CART greedy search

algorithm to produce a tree with univariate splits.

11 QUEST (Quick, Unbiased and Efficient Statistical Tree) A classification tree restricted to binary splits
CRUISE (Classification Rule with Unbiased Interaction Selection and Estimation) A classification tree
that splits each node into two or more sub-nodes. These new software were developed by Wei-Yin Loh at
the University of Wisconsin-Madison, Shih at University of Taiwan, and Hyunjoong Kim at University of
Tennessee,. vastly-improved descendant of an older algorithm called FACT.

 114

QUEST needs two text input files: 1) Data file: This file contains the training

samples. Each sample consists of observations on the class (or response or dependent)

variable and the predictor (or independent) variables. The entries in each sample record

should be comma or space delimited. Each record can occupy one or more lines in the

file, but each record must begin on a new line. Record values can be numerical or

character strings. Categorical variables can be given numerical or character values. 2)

Description file: This file is used to provide information to the program about the name

of the data file, the names and the column locations of the variables, and their roles in the

analysis.

The following is the description file:

phy183.dat

"?"

column, var, type
 1 1stGotCrr n
 2 TotCorr n
 3 AvgTries n
 4 TimeCorr n
 5 TimeSpent n
 6 Discuss n
 7 Class2 x
 8 Class3 d
 9 Class9 x
 10 Grade x

In the first line, we put the name of data file (phy183.dat), and in the second line we

put the character used to denote missing data (?). In our data set we have no missing data.

The position (column), name (var) and role (type) of each variable follow, with one line

for each variable. The following roles for the variables are permitted: “c” stands for

categorical variable; “d” for class (dependent) variable; only one variable can have the d

indicator; “n” for a numerical variable; and “x” which indicates that the variable is

excluded from the analysis.

 115

QUEST allows both interactive and batch mode. By default it uses “discriminant

analysis” as a method for split point selection. It is an unbiased variable selection method

described in Loh and Shih (1997). However, in advanced mode, the user can select

“exhaustive search” (Breiman et al., 1984) which is used in CART. The former is the

default option if the number of classes is more than 2, otherwise the latter is the default

option. If the latter option is selected, the program will ask for the user to choose the

splitting criterion including one of the following five methods which are studied in Shih

(1999):

1 Likelihood Ratio Gˆ2

2 Pearson Chiˆ2

3 Gini

4 MPI (Mean Posterior Improvement)

5 Other members of the divergence family

The likelihood criterion is the default option. If instead the CART-style split is used,

the Gini criterion is the default option. In our case, we selected the fifth method of

exhaustive search which was optimal regarding the misclassification ratio.

QUEST asks for the prior for each class. If the priors are to given, the program will

then ask the user to input the priors. If unequal costs are present (like in this example),

the priors are altered using the formula in Breiman et al. (1984, pp. 114-115). In our cases

the prior for each class is estimated based on the class distribution. This asks for the

misclassification costs. If the costs are to be given, the program will ask the user to input

the costs. In our cases the misclassification costs are equal. The user can choose either

split on a single variable or linear combination of variables. We used split on a single

variable.

 116

QUEST also asks for the number of SEs which controls the size of the pruned tree.

0-SE gives the tree with the smallest cross-validation estimate of misclassification cost or

error. QUEST enables user to select the value of V in V-fold cross-validation. The larger

the value of V, the longer running time the program takes to run. 10-fold and 226-fold

(Leave-One-Out) are used in our cases.

The classification matrices based on the learning sample and CV procedure are

reported. Some samples of these reports are shown in Appendix A. You can see a table

gives the sequence of pruned subtrees. The 3rd column shows the cost complexity value

for each subtree by using the definition in Breiman et al. (1984, Definition 3.5 p. 66). The

4th column gives the current or re-substitution cost (error) for each subtree. Another table

gives the size, estimate of misclassification cost and its standard error for each pruned

sub-tree. The 2nd column shows the number of terminal nodes. The 3rd column shows

the mean cross-validation estimate of misclassification cost and the 4th column gives its

estimated standard error using the approximate formula in Breiman et al. (1984, pp. 306-

309). The tree marked with an “*” is the one with the minimum mean cross-validation

estimate of misclassification cost (also called the 0-SE tree). The tree based on the mean

cross-validation estimate of misclassification cost and the number of SEs is marked with

“**” (See Appendix A).

QUEST trees are given in outline form suitable for importing into flowchart

packages like allCLEAR (CLEAR Software, 1996). Alternatively, the trees may be

outputted in LaTeX code. The public domain macro package pstricks (Goossens, Rahtz

and Mittelbach, 1997) or TreeTEX (Bruggemann-Klein and Wood, 1988) is needed to

render the LaTeX trees.

 117

CRUISE is also a new statistical decision tree algorithm for classification and data

mining. It has negligible bias in variable selection. It splits each node into as many sub-

nodes as the number of classes in the response variable It has several ways to deal with

missing values. It can detect local interactions between pairs of predictor variables.

CRUISE has most of QUEST capabilities and reports (See Appendix A). We have

brought the results of tree-based classification with QUEST and the CRUISE into the

final reporting table (Table 4.11), which includes all tree-based and non-tree based

classifiers on our data set in the cases of 2-Classes, 3-Classes, and 9-Classes.

 118

4.2.3 Final Results without optimization

The overall results of classifiers’ performance on our data set are shown in the Table

4.11. Regarding individual classifier, for the case of 2-classes, kNN has the best

performance with 82.3% accuracy. In the case of 3-classes and 9-classes, CART has the

best accuracy of about 60% in 3-classes and 43% in 9-Classes. However, considering the

combination of non-tree-based classifiers, the CMC has the best performance in all three

cases. That is we got the 86.8% accuracy in the case of 2-Classes, 71% in the case of 3-

Classes, and 51% in the case of 9-Classes.

Table 4.11: Comparing the Error Rate of all classifiers on PHY183 data set in
the cases of 2-Classes, 3-Classes, and 9-Classes, using 10-fold cross-validation,

Without Optimization

 Error Rate
Classifier 2-Classes 3-Classes 9-Classes

C5.0 20.7% 43.2% 74.4%
CART 18.5% 40.1% 66.9%

QUEST 19.5% 42.9% 80.0%
CRUISE 19.0% 45.1% 77.1%

Tree
Classifier

Bayes 23.6% 51.4% 77.0%
1NN 23.2% 49.5% 71.0%
kNN 17.7% 49.6% 72.5%

Parzen 25.0% 51.9% 79.5%
MLP 20.5% 49.1% -

Non-tree
Classifier

CMC 13.2% 29.1% 49.0%

So far, we have grouped students using multiple classifiers, comparing their

prediction accuracy with CMC. In the next section we will study a way to optimize these

results in order to find more efficient and more accurate classifiers.

 119

4.3 Optimizing the prediction accuracy

We found that a combination of multiple classifiers leads to a significant

improvement in classification performance. Through weighting the feature vectors using

a Genetic Algorithm we can optimize the prediction accuracy and get a marked

improvement over raw classification. We further show that when the number of features

is few; feature-weighting works better than just feature selection.

4.3.1 Genetic Algorithms (GAs)

This learning procedure can be considered a search through a space of data points. A

genetic algorithm presents a powerful alternative to traditional search techniques. It has

been inspired by a similar predictive model in nature. Evolution in nature is controlled

through the following principles:

Natural Selection: the strongest specimens have the highest chance to survive and

reproduce, while the weak ones are likely to die before the reproduction stage.

Reproduction: the fittest specimens recombine their genetic information, thus

creating new specimens with somewhat new characteristics.

Mutation leads to random changes in genetic information.

The success of this “search technique” in nature inspired some researchers to

propose methods and develop algorithms that could be encoded in computer programs. A

clear and simple introduction to the discipline of genetic algorithm has been made by

Goldberg (1989). To start casting a real problem in a setting where its solution is can be

obtained through a genetic algorithm, two important steps are taken: encoding the search

space into chromosomes (a string of binary/real values); and defining a fitness function

 120

that plays the role of an evaluation function in a heuristic search. The implementation of

a chromosome is typically in the form of bit strings.

4.3.1.1 What is a Simple GA (SGA)?

The main steps of a GA are reproduction, recombination, and mutation in the

following algorithm (Michalski et al., 1998):

1. Construct the initial population as a set of binary strings generated randomly

or by some pre-specified mechanisms.

2. Replicate the specimen in the population into a set of survivors by a

mechanism that ensures that specimens with a higher fitness value have a

higher chance of survival.

3. Pair up all the survivors, such that each has a mate. Next specific chunks of

encoded data are swapped between mates. Mutation arises when a single bit

flip-flops.

4. If the fitness function has not improved through several cycles, stop;

otherwise go to step 2.

4.3.1.2 Specific use of GAs in pattern classification

Genetic Algorithms have been shown to be an effective tool to use in data mining

and pattern recognition (Freitas, 2002; Jain and Zongker, 1997; Falkenauer, 1998; Pei et

al., 1997; Park and Song, 1998; Michalewicz, 1996; De Jong et al., 1993). An important

aspect of GAs in a learning context is their use in pattern recognition. There are two

different approaches to applying GA in pattern recognition:

 121

1. Apply a GA directly as a classifier. Bandyopadhyay and Murthy (1995)

applied GA to find the decision boundary in N dimensional feature space.

2. Use a GA as an optimization tool for resetting the parameters in other

classifiers. Most applications of GAs in pattern recognition optimize some

parameters in the classification process.

Many researchers have used GAs in feature selection (Bala et al. 1997; Guerra-

Salcedo and Whitley 1999, Vafaie and De Jong, 1993; Martin-Bautista and Vila, 1999).

GAs have been applied to find an optimal set of feature weights that improve

classification accuracy. First, a traditional feature extraction like Principal Component

Analysis (PCA) is applied, and then a classifier like k-NN is used to calculate the fitness

function for GA (Seidlecki, 1989; Pei et al., 1998). Combined classifiers are another area

that GAs have been used to optimize. Kuncheva and Jain (2000) used a GA for selecting

the features as well as selecting the types of individual classifiers in their design of a

Classifier Fusion System. GA is also used in selecting the prototypes in the case-based

classification (Skalak, 1994).

In this work we focus on the second approach and use a GA to optimize a

combination of classifiers. Our objective is to predict the students’ final grades based on

their web-use features, which are extracted from the homework data. We design,

implement, and evaluate a series of pattern classifiers with various parameters in order to

compare their performance on a data set from LON-CAPA. Error rates for the individual

classifiers, their combination and the GA optimized combination are presented.

 122

4.3.2 Implementation of a GA to optimize the prediction accuracy

We use the GAToolBox12 from MATLAB to implement a GA to optimize

classification performance. Our goal is to find a population of best weights for every

feature vector, which minimize the classification error rate.

The feature vector for our predictors are the set of six variables for every student:

Success rate, Success at the first try, Number of attempts before correct answer is derived,

the time at which the student got the problem correct relative to the due date, total time

spent on the problem, and the number of online interactions of the student both with other

students and with the instructor.

We randomly initialize a population of six dimensional weight vectors with values

between 0 and 1, corresponding to the feature vector and experimented with different

number of population sizes. We obtained good results using a population with 200

individuals. The GA Toolbox supports binary, integer, real-valued and floating-point

chromosome representations. Real-valued populations may be initialized using the

toolbox function crtrp. For example, to create a random population of 6 individuals with

200 variables each: we define boundaries on the variables in FieldD which is a matrix

containing the boundaries of each variable of an individual.

FieldD = [0 0 0 0 0 0; % lower bound

 1 1 1 1 1 1]; % upper bound

An initial population created with Chrom = crtrp(200, FieldD), An example is as

follows:

12 Downloaded from http://www.shef.ac.uk/~gaipp/ga-toolbox/

 123

Chrom = 0.23 0.17 0.95 0.38 0.06 0.26

 0.35 0.09 0.43 0.64 0.20 0.54

 0.50 0.10 0.09 0.65 0.68 0.46

 0.21 0.29 0.89 0.48 0.63 0.89

………………

We use the simple genetic algorithm (SGA), which is described by Goldberg (1989).

4.3.2.1 GA Operators

The SGA uses common GA operators to find a population of solutions which

optimize the fitness values.

4.3.2.1.1 Recombination

We use “Stochastic Universal Sampling” (Baker, 1987) as our selection method. A

form of stochastic universal sampling is implemented by obtaining a cumulative sum of

the fitness vector, FitnV, and generating N equally spaced numbers between 0 and

sum(FitnV). Thus, only one random number is generated, all the others used being

equally spaced from that point. The index of the individuals selected is determined by

comparing the generated numbers with the cumulative sum vector. The probability of an

individual being selected is then given by

where f(xi) is the fitness of individual xi and F(xi) is the probability of that individual

being selected.

∑
=

=
indN

i
i

i
i

xf

xf
xF

1
)(

)(
)(

 124

4.3.2.1.2 Crossover

The crossover operation is not necessarily performed on all strings in the population.

Instead, it is applied with a probability Px when the pairs are chosen for breeding. We

select Px = 0.7. There are several functions to make crossover on real-valued matrices.

One of them is recint, which performs intermediate recombination between pairs of

individuals in the current population, OldChrom, and returns a new population after

mating, NewChrom. Each row of OldChrom corresponds to one individual. recint is a

function only applicable to populations of real-value variables. Intermediate

recombination combines parent values using the following formula (Muhlenbein and

Schlierkamp-Voosen, 1993).

Offspring = parent1 + Alpha × (parent2 – parent1)

Alpha is a Scaling factor chosen uniformly in the interval [-0.25, 1.25]

4.3.2.1.3 Mutation

A further genetic operator, mutation is applied to the new chromosomes, with a set

probability Pm. Mutation causes the individual genetic representation to be changed

according to some probabilistic rule. Mutation is generally considered to be a background

operator that ensures that the probability of searching a particular subspace of the

problem space is never zero. This has the effect of tending to inhibit the possibility of

converging to a local optimum, rather than the global optimum.

There are several functions to make mutation on real-valued population. We used

mutbga, which takes the real-valued population, OldChrom, mutates each variable with

given probability and returns the population after mutation, NewChrom =

mutbga(OldChrom, FieldD, MutOpt) takes the current population, stored in the matrix

 125

OldChrom and mutates each variable with probability by addition of small random

values (size of the mutation step). We considered 1/600 as our mutation rate. The

mutation of each variable is calculated as follows:

Mutated Var = Var + MutMx × range × MutOpt(2) × delta

where delta is an internal matrix which specifies the normalized mutation step size;

MutMx is an internal mask table; and MutOpt specifies the mutation rate and its

shrinkage during the run. The mutation operator mutbga is able to generate most points

in the hypercube defined by the variables of the individual and the range of the mutation.

However, it tests more often near the variable, that is, the probability of small step sizes

is greater than that of larger step sizes.

4.3.2.2 Fitness Function

During the reproduction phase, each individual is assigned a fitness value derived

from its raw performance measure given by the objective function. This value is used in

the selection to bias towards more fit individuals. Highly fit individuals, relative to the

whole population, have a high probability of being selected for mating whereas less fit

individuals have a correspondingly low probability of being selected. The error rate is

measured in each round of cross validation by dividing “the total number of misclassified

examples” into “total number of test examples”. Therefore, our fitness function measures

the error rate achieved by CMC and our objective would be to maximize this

performance (minimize the error rate).

 126

4.3.3 Experimental Results of GA Optimization

For GA optimization, we used 200 individuals in our population, running the GA

over 500 generations. We ran the program 10 times and got the averages, which are

shown, in Table 4.12. In every run 500×200 times the fitness function is called in which

we used 10-fold cross validation to measure the average performance of CMC. So every

classifier is called 3×106 times for the case of 2-classes, 3-classes and 9-classes. Thus,

the time overhead for fitness evaluation is critical. Since using the MLP in this process

took about 2 minutes and all other four non-tree classifiers (Bayes, 1NN, 3NN, and

Parzen window) took only 3 seconds, we omitted the MLP from our classifiers group so

we could obtain the results in a reasonable time.

Figures 4.6-4.8 shows the best result of the ten runs over our data set. These figures

represent the population mean, the best individual at each generation and the best value

yielded by the run. The results in Table 4.12 represent the mean performance with a two-

tailed t-test with a 95% confidence interval. For the improvement of GA over non-GA

result, a P-value indicating the probability of the Null-Hypothesis (There is no

improvement) is also given, showing the significance of the GA optimization.

 127

Figure 4.6. Graph of GA Optimized CMC performance in the case of 2-Classes

Figure 4.7. Graph of GA Optimized CMC performance in the case of 3-Classes

 128

Figure 4.8. Graph of GA Optimized CMC performance in the case of 9-Classes

Table 4.12. Comparing the CMC Performance on PHY183 data set Using GA
and without GA in the cases of 2-Classes, 3-Classess, and 9-Classes, 95% confidence

interval.

 Performance %
Classifier 2-Classes 3-Classes 9-Classes

CMC of four Classifiers
without GA 83.87± 1.73 61.86± 2.16 49.74± 1.86

GA Optimized CMC, Mean
individual 94.09± 2.84 72.13± 0.39 62.25± 0.63

Improvement 10.22± 1.92 10.26± 1.84 12.51± 1.75

All have p<0.000, indicating significant improvement. Therefore, using GA, in all

the cases, we got more than a 10% mean individual performance improvement and about

12 to 15% mean individual performance improvement. Figure 4.9 shows the graph of

average mean individual performance improvement.

 129

0

10

20

30

40

50

60

70

80

90

100

2-Classes 3-Classes 9-Classes

Students' Classes

CM
C

Pe
rfo

rm
an

ce

CMC Performance without GA GA Optimized CMC

Figure 4.9. Char t of comparing CMC average performance, using GA and

without GA.

Finally, we can examine the individuals (weights) for features by which we obtained

the improved results. This feature weighting indicates the importance of each feature for

making the required classification. In most cases the results are similar to Multiple Linear

Regressions or tree-based software that use statistical methods to measure feature

importance. Table 4.13 shows the importance of the six features in the 3-classes case

using the Entropy splitting criterion. Based on entropy, a statistical property called

information gain measures how well a given feature separates the training examples in

relation to their target classes. Entropy characterizes impurity of an arbitrary collection

of examples S at a specific node N. In Duda et al. (2001) the impurity of a node N is

denoted by i(N).

Entropy(S) =)(log)()(2 j
j

j PPNi ωω∑−=

 130

where)(jP ω is the fraction of examples at node N that go to category jω .

Table 4.13. Feature Importance in 3-Classes Using Entropy Criterion

Feature Importance %
Total_Correct _Answers 100.00

Total_Number_of_Submissions 58.61
First_Got_Correct 27.70

Time_Spent_to_Solve 24.60
Total_Time_Spent 24.47

Communication 9.21

The GA results also show that the “Total number of correct answers” and the “Total

number of submissions” are the most important features for classification accuracy; both

are positively correlated to the true class labels. The second column in Table 4.13 shows

the percentage of feature importance. One important finding is that GAs determine

optimal weights for features. Using this set of weights we can extract a new set of

features which significantly improve the prediction accuracy. In other words, this

resultant set of weights transforms the original features into new salient features.

 131

4.4 Extending the work toward more LON-CAPA data sets

We selected 14 student/course data sets of MSU courses, which used LON-CAPA as

shown in Table 4.14 and 4.15.

Table 4.14. 14 of LON-CAPA courses at MSU

Course Term Title
ADV 205 SS03 Principles of Advertising
BS 111 SS02 Biological Science: Cells and Molecules
BS 111 SS03 Biological Science: Cells and Molecules
CE 280 SS03 Civil Engineering: Intro Environment Eng.
FI 414 SS03 Advanced Business Finance (w)

LBS 271 FS02 Lyman Briggs School: Physics I
LBS 272 SS03 Lyman Briggs School: Physics II
MT 204 SS03 Medical Tech.: Mechanisms of Disease
MT 432 SS03 Clinic Immun. & Immunohematology
PHY 183 SS02 Physics Scientists & Engineers I
PHY 183 SS03 Physics Scientists & Engineers I
PHY 231c SS03 Introductory Physics I
PHY 232c FS03 Introductory Physics II
PHY 232 FS03 Introductory Physics II

 132

Table 4.15 Characteristics of 14 of MSU courses, which held by LON-CAPA

Course
Number

of
Students

Number of
Problems

Size of
Activity log

Size of
useful data

Number of
Transactions

ADV205_SS03 609 773 82.5 MB 12.1 MB 424,481
BS111_SS02 372 229 361.2 MB 34.1 MB 1,112,394
BS111_SS03 402 229 367.6 MB 50.2 MB 1,689,656
CE280_SS03 178 19 6 28.9 MB 3.5 MB 127,779
FI414_SS03 169 68 16.8 MB 2.2 MB 83,715

LBS271_FS02 132 174 119.8 MB 18.7 MB 706,700
LBS272_SS03 102 166 73.9 MB 15.3 MB 585,524
MT204_SS03 27 150 5.2 MB 0.7 MB 23,741
MT432_SS03 62 150 20.0 MB 2.4 MB 90,120

PHY183_SS02 227 184 140.3 MB 21.3 MB 452,342
PHY183_SS03 306 255 210.1 MB 26.8 MB 889,775
PHY231c_SS03 99 247 67.2 MB 14.1 MB 536,691
PHY232c_SS03 83 194 55.1 MB 10.9 MB 412,646
PHY232_FS03 220 259 138.5 MB 19.7 MB 981,568

For example, the third row of the Table 4.16 shows that BS111 (Biological Science:

Cells and Molecules) was held in spring semester 2003 and contained 229 online

homework problems, and 402 students used LON-CAPA for this course. The BS111

course had an activity log with approximately 368 MB. Using some Perl script modules

for cleansing the data, we found 48 MB of useful data in the BS111 SS03 course. We

then pulled from these logged data 1,689,656 transactions (interactions between students

and homework/exam/quiz problems) from which we extracted the following nine features

(Having revised six features that were explained in 4.1):

1. Number of attempts before correct answer is derived

2. Total number of correct answers

3. Success at the first try

4. Getting the problem correct on the second try

5. Getting the problem correct between 3 and 9 tries

 133

6. Getting the problem correct with a high number of tries (10 or more tries).

7. Total time that passed from the first attempt, until the correct solution was

demonstrated, regardless of the time spent logged in to the system

8. Total time spent on the problem regardless of whether they got the correct answer

or not

9. Participating in the communication mechanisms

Based on the above extracted features in each course, we classify the students, and

try to predict for every student to which class he/she belongs. We categorize the students

with one of two class labels: “Passed” for grades higher than 2.0, and ”Failed” for grades

less than or equal to 2.0 where the MSU grading system is based on grades from 0.0 to

4.0. Figure 4.10 shows the grade distribution for the BS111 fall semester 2003.

0 10 20 30 40 50 60

of Students

0

0.5

1

1.5

2

2.5

3

3.5

4

G
ra

de
s

Figure 4.10. LON-CAPA: BS111 SS03, Grades distribution

 134

4.4.1 Experimental Results

Without using GA, the overall results of classification performance on our datasets

for four classifiers and classification fusion are shown in the Table 4.16. Individual

classifiers, 1NN and kNN have mostly the best performance. However, the classification

fusion improved the classification accuracy significantly in all data sets. That is, it

achieved in average 79% accuracy over the given data sets.

Table 4.16 Comparing the average performance% of ten runs of classifiers on
the given datasets using 10-fold cross validation, without GA

Data sets Bayes 1NN kNN Parzen
Window

Classification
Fusion

ADV 205, 03 55.7 69.9 70.7 55.8 78.2
BS 111, 02 54.6 67.8 69.6 57.6 74.9
BS 111, 03 52.6 62.1 55.0 59.7 71.2
CE 280, 03 66.6 73.6 74.9 65.2 81.4
FI 414, 03 65.0 76.4 72.3 70.3 82.2

LBS 271, 02 66.9 75.6 73.8 59.6 79.2
LBS 272, 03 72.3 70.4 69.6 65.3 77.6
MT 204, 03 63.4 71.5 68.4 56.4 82.2
MT 432, 03 67.6 77.6 79.1 59.8 84.0
PHY 183, 02 73.4 76.8 80.3 65.0 83.9
PHY 183, 03 59.6 66.5 70.4 54.4 76.6
PHY 231c, 03 56.7 74.5 72.6 60.9 80.7
PHY 232c, 03 65.6 71.7 75.6 57.8 81.6
PHY 232, 03 59.9 73.5 71.4 56.3 79.8

For GA optimization, we used 200 individuals (weight vectors) in our population,

running the GA over 500 generations. We ran the program 10 times and got the averages,

which are shown, in Table 4.17.

 135

Table 4.17 Comparing the classification fusion performance on given datasets,
without-GA, using-GA (Mean individual) and improvement, 95% confidence

interval

Data sets Without GA GA optimized Improvement
ADV 205, 03 78.19± 1.34 89.11± 1.23 10.92± 0.94
BS 111, 02 74.93± 2.12 87.25± 0.93 12.21± 1.65
BS 111, 03 71.19± 1.34 81.09± 2.42 9.82± 1.33
CE 280, 03 81.43± 2.13 92.61± 2.07 11.36± 1.41
FI 414, 03 82.24± 1.54 91.73± 1.21 9.50± 1.76

LBS 271, 02 79.23± 1.92 90.02± 1.65 10.88± 0.64
LBS 272, 03 77.56± 0.87 87.61± 1.03 10.11± 0.62
MT 204, 03 82.24± 1.65 91.93± 2.23 9.96± 1.32
MT 432, 03 84.03± 2.13 95.21± 1.22 11.16± 1.28
PHY 183, 02 83.87± 1.73 94.09± 2.84 10.22± 1.92
PHY 183, 03 76.56± 1.37 87.14± 1.69 9.36± 1.14
PHY 231c, 03 80.67± 1.32 91.41± 2.27 10.74± 1.34
PHY 232c, 03 81.55± 0.13 92.39± 1.58 10.78± 1.53
PHY 232, 03 79.77± 1.64 88.61± 2.45 9.13± 2.23
Total Average 78.98± 12 90.03± 1.30 10.53± 56

The results in Table 4.17 represent the mean performance with a two-tailed t-test

with a 95% confidence interval for every data set. For the improvement of GA over non-

GA result, a P-value indicating the probability of the Null-Hypothesis (There is no

improvement) is also given, showing the significance of the GA optimization. All have

p<0.000, indicating significant improvement. Therefore, using GA, in all the cases, we

got approximately more than a 10% mean individual performance improvement and

about 10 to 17% best individual performance improvement. Fig. 4.11 shows the results of

one of the ten runs in the case of 2-Classes (passed and failed). The doted line represents

the population mean, and the solid line shows the best individual at each generation and

the best value yielded by the run.

 136

Figure 4.11 GA-Optimized Combination of Multiple Classifiers’ (CMC) performance in the case of
2-Class labels (Passed and Failed) for BS111 2003, 200 weight vectors individuals, 500 Generations

Finally, we can examine the individuals (weights) for features by which we obtained

the improved results. This feature weighting indicates the importance of each feature for

making the required classification. In most cases the results are similar to Multiple Linear

Regressions or some tree-based software (like CART) that use statistical methods to

measure feature importance. The GA feature weighting results, as shown in Table 4.18,

state that the “Success with high number of tries” is the most important feature. The

“Total number of correct answers” feature is also the most important in some cases; both

are positively correlated to the true class labels.

If we use one course as the training data and another course as the test data we again

achieve a significant improvement in prediction accuracy for both using the combination

of multiple classifiers and applying genetic algorithms as the optimizer. For example,

using BS111 from fall semester 2003 as the training set and PHY231 from spring

 137

semester 2004 as the test data, and using the weighted features in the training set, we

obtain a significant improvement for classification accuracy in the test data.

 Table 4.18 Relative Feature Importance%, Using GA weighting for BS111
2003 course

Feature Importance %
Average Number of Tries 18.9

Total number of Correct Answers 84.7
of Success at the First Try 24.4

of Success at the Second Try 26.5
Got Correct with 3-9 Tries 21.2

Got Correct with # of Tries ≥ 10 91.7
Time Spent to Solve the Problems 32.1
Total Time Spent on the Problems 36.5

of communication 3.6

Table 4.19 shows the importance of the nine features in the BS 111 SS03 course,

applying the Gini splitting criterion. Based on Gini, a statistical property called

information gain measures how well a given feature separates the training examples in

relation to their target classes. Gini characterizes impurity of an arbitrary collection of

examples S at a specific node N. In Duda et al. (2001) the impurity of a node N is

denoted by i(N) such that:

)(1)()()(Gini(S) 2
j

j
i

ij
j PPPNi ωωω ∑∑ −===

≠

where)(jP ω is the fraction of examples at node N that go to category jω . Gini

attempts to separate classes by focusing on one class at a time. It will always favor

working on the largest or, if you use costs or weights, the most important class in a node.

 138

Table 4.19 Feature Importance for BS111 2003, using decision-tree software
CART, applying Gini Criterion

Variable
Total number of Correct Answers 100.00 ||
Got Correct with # of Tries ≥ 10 93.34 ||

Average number of tries 58.61 |||||||||||||||||||||||||||||||||||
of Success at the First Try 37.70 ||||||||||||||||||
Got Correct with 3-9 Tries 30.31 ||||||||||||||

of Success at the Second Try 23.17 ||||||||
Time Spent to Solve the Problems 16.60 |||||
Total Time Spent on the Problems 14.47 ||||

of communication 2.21 |

Comparing results in Table 4.18 (GA-weighting) and Table 4.19 (Gini index

criterion) shows the very similar output, which demonstrates merits of the proposed

method for detecting the feature importance.

4.5 Summary

We proposed a new approach to classifying student usage of web-based instruction.

Four classifiers were used to segregate student data. A combination of multiple classifiers

led to a significant accuracy improvement in all three cases (2-, 3- and 9-Classes).

Weighting the features and using a genetic algorithm to minimize the error rate improved

the prediction accuracy by at least 10% in the all cases. In cases where the number of

features was low, feature weighting was a significant improvement over selection. The

successful optimization of student classification in all three cases demonstrates the value

of LON-CAPA data in predicting students’ final grades based on features extracted from

homework data. This approach is easily adaptable to different types of courses, different

population sizes, and allows for different features to be analyzed. This work represents a

 139

rigorous application of known classifiers as a means of analyzing and comparing use and

performance of students who have taken a technical course that was partially/completely

administered via the web.

For future work, we plan to implement such an optimized assessment tool for every

student on any particular problem. Therefore, we can track students’ behaviors on a

particular problem over several semesters in order to achieve more reliable prediction.

This work has been published in (Minaei-Bidgoli & Punch, 2003; Minaei-Bidgoli, et al.

2003; Minaei-Bidgoli et al., 2004c-e).

 140

Chapter 5 Ensembles of Multiple Clusterings

Since LON-CAPA data are distributed among several servers and distributed data

mining requires efficient algorithms form multiple sources and features, this chapter

represents a framework for clustering ensembles in order to provide an optimal

framework for categorizing distributed web-based educational resources. This research

extends previous theoretical work regarding clustering ensembles with the goal of

creating an optimal framework for categorizing web-based educational resources.

Clustering ensembles combine multiple partitions of data into a single clustering solution

of better quality. Inspired by the success of supervised bagging and boosting algorithms,

we propose non-adaptive and adaptive resampling schemes for the integration of multiple

independent and dependent clusterings. We investigate the effectiveness of bagging

techniques, comparing the efficacy of sampling with and without replacement, in

conjunction with several consensus algorithms. In our adaptive approach, individual

partitions in the ensemble are sequentially generated by clustering specially selected

subsamples of the given data set. The sampling probability for each data point

dynamically depends on the consistency of its previous assignments in the ensemble.

New subsamples are then drawn to increasingly focus on the problematic regions of the

input feature space. A measure of data point clustering consistency is therefore defined to

 141

guide this adaptation. Experimental results show improved stability and accuracy for

clustering structures obtained via bootstrapping, subsampling, and adaptive techniques. A

meaningful consensus partition for an entire set of data points emerges from multiple

clusterings of bootstraps and subsamples. Subsamples of small size can reduce

computational cost and measurement complexity for many unsupervised data mining

tasks with distributed sources of data. This empirical study also compares the

performance of adaptive and non-adaptive clustering ensembles using different consensus

functions on a number of data sets. By focusing attention on the data points with the least

consistent clustering assignments, one can better approximate the inter-cluster boundaries

and improve clustering accuracy and convergence speed as a function of the number of

partitions in the ensemble. The comparison of adaptive and non-adaptive approaches is a

new avenue for research, and this study helps to pave the way for the useful application

of distributed data mining methods.

5.1 Introduction

Exploratory data analysis and, in particular, data clustering can significantly benefit

from combining multiple data partitions. Clustering ensembles can offer better solutions

in terms of robustness, novelty and stability (Fred & Jain, 2002; Strehl & Ghosh, 2002;

Topchy et al., 2003a). Moreover, their parallelization capabilities are a natural fit for the

demands of distributed data mining. Yet, achieving stability in the combination of

multiple clusterings presents difficulties.

The combination of clusterings is a more challenging task than the combination of

supervised classifications. In the absence of labeled training data, we face a difficult

correspondence problem between cluster labels in different partitions of an ensemble.

 142

Recent studies (Topchy et al., 2004) have demonstrated that consensus clustering can be

found outside of voting-type situations using graph-based, statistical or information-

theoretic methods without explicitly solving the label correspondence problem. Other

empirical consensus functions were also considered in (Dudoit & Fridlyand, 2003; Fisher

& Buhmann, 2003, Fern & Brodley, 2003). However, the problem of consensus

clustering is known to be NP complete (Barthelemy & Leclerc, 1993).

Beside the consensus function, clustering ensembles need a partition generation

procedure. Several methods are known to create partitions for clustering ensembles. For

example, one can use:

1. different clustering algorithms (Strehl & Ghosh, 2002),

2. different initializations – parameter values or built-in randomness of a specific

clustering algorithm (Fred & Jain, 2002)

3. different subsets of features (weak clustering algorithms) (Topchy et al.,

2003),

4. different subsets of the original data (data resampling) (Dudoit & Fridlyand,

2003; Fisher & Buhmann, 2003, Minaei et al., 2003).

The focus of this study is the last method, namely the combination of clusterings

using random samples of the original data. Conventional data resampling generates

ensemble partitions independently; the probability of obtaining the ensemble consisting

of B partitions {π1, π2,…,πB} of the given data, D, can be factorized as:

)|()|},...,,({
121 DpDp t

B

tB ππππ
=
Π= (5.1)

 143

.

Hence, the increased efficacy of an ensemble is mostly attributed to the number of

independent, yet identically distributed partitions, assuming that a partition of data is

treated as a random variable π. Even when the clusterings are generated sequentially, it is

traditionally done without considering previously produced clusterings:

1 2 1(| , ,..., ;) (|)t t t tp D p Dπ π π π π− − = (5.2)

However, similar to the ensembles of supervised classifiers using boosting algorithms

(Brieman 1998), a more accurate consensus clustering can be obtained if contributing

partitions take into account the previously determined solutions. Unfortunately, it is not

possible to mechanically apply the decision fusion algorithms from the supervised

(classification) to the unsupervised (clustering) domain. New objective functions for

guiding partition generation and the subsequent decision integration process are

necessary in order to guide further refinement. Frossyniotis et al. (2004) apply the general

principle of boosting to provide a consistent partitioning of a data set. At each boosting

iteration, a new training set is created and the final clustering solution is produced by

aggregating the multiple clustering results through a weighted voting.

We propose a simple adaptive approach to partition generation that makes use of

clustering history. In clustering, ground truth in the form of class labels is not available.

Therefore, we need an alternative measure of performance for an ensemble of partitions.

We determine clustering consistency for data points by evaluating a history of cluster

assignments for each data point within the generated sequence of partitions. Clustering

consistency serves for adapting the data sampling to the current state of an ensemble

 144

during partition generation. The goal of adaptation is to improve confidence in cluster

assignments by concentrating sampling distribution on problematic regions of the feature

space. In other words, by focusing attention on the data points with the least consistent

clustering assignments, one can better approximate (indirectly) the inter-cluster

boundaries.

The main objectives of this chapter are four-fold:

1. to present a detailed taxonomy of clustering ensemble approaches (section

5.2),

2. to expose critical and unaddressed issues in applying resampling methods

(section 5.5),

3. to provide a detailed comparison of bootstrap versus subsampling ensemble

generation (section 5.7),

4. and finally to study adaptive partitioning ensembles (section 5.6).

The remainder of the chapter is devoted to different consensus functions used in our

experiments (section 5.4), algorithms for resampling schemes (sections 5.3 and 5.6),

addressing the problems of estimation of clustering consistency and finding a consensus

clustering (section 5.6). Finally, we evaluate the performance of adaptive clustering

ensembles (Section 5.8) on a number of real-world and artificial data sets in comparison

with non-adaptive clustering ensembles of bootstrap partitions (Dudoit & Fridlyand,

2003; Fisher & Buhmann, 2003, Minaei-Bidgoli et al., 2003b).

5.2 Taxonomy of different approaches

A growing number of techniques have been applied to clustering combinations. A

co-association consensus function was introduced for finding a combined partition in

(Fred & Jain, 2002). The authors further studied combining k-means partitions with

 145

random initializations and a random number of clusters. Topchy et al. (2003) proposed

new consensus functions related to intra-class variance criteria as well as the use of weak

clustering components. Strehl and Ghosh (2002) have made a number of important

contributions, such as their detailed study of hypergraph-based algorithms for finding

consensus partitions as well as their object-distributed and feature-distributed

formulations of the problem. They also examined the combination of partitions with a

deterministic overlap of points between data subsets (non-random).

Resampling methods have been traditionally used to obtain more accurate estimates

of data statistics. Efron (1979) generalized the concept of so-called “pseudo-samples” to

sampling with replacement – the bootstrap method. Resampling methods such as bagging

have been successfully applied in the context of supervised learning (Breiman 1996). Jain

and Moreau (1987) employed bootstrapping in cluster analysis to estimate the number of

clusters in a multi-dimensional data set as well as for evaluating cluster tendency/validity.

A measure of consistency between two clusters is defined in (Levine & Moreau, 2001).

Data resampling has been used as a tool for estimating the validity of clustering (Fisher &

Buhmann, 2003; Dudoit & Fridlyand, 2001; Ben-Hur et al., 2002) and its reliability (Roth

et al., 2002).

The taxonomy of different consensus functions for clustering combination is shown

in Figure 5.2. Several methods are known to create partitions for clustering ensembles.

This taxonomy presents solutions for the generative procedure as well. Details of the

algorithms can be found in the listed references in Figure 5.1.

 146

Generative mechanisms (How to obtain different components?)
1. Apply various clustering algorithms (Strehl & Ghosh, 2002)

2. Use a single algorithm

 2.1. Different built-in initialization (Fred & Jain, 2002; Topchy et al. 2003b)

 2.2. Different parameters (Fred & Jain, 2002)

 2.3. Different subsets of data points

 2.3.1. Deterministic subsets (Strehl & Ghosh, 2002)

 2.3.2. Resampling (Dudoit & Fridlyand,2001;Monti et al. 2003; Fisher & Buhmann, 2003,

Minaei-Bidgoli et al., 2003b)

 2.3.2.1. Bootstrap (Sampling with replacement)

 2.3.2.2. Subsampling (Sampling without replacement)

 2.3.2.3. Adaptive scheme (Topchy et al., 2004; Frossyniotis et al., 2004)

 2.4. Projecting data onto different subspaces (Topchy et al., 2003a; Zhang&Brodely, 2003)

 2.5. Different subset of features (Strehl & Ghosh, 2002)

Consensus functions (How to integrate cluster ensemble?)
1. Using Co-association Matrix (Fred & Jain, 2002; Monti et al., 2003)

 1.1. Single Link (SL)/ Minimum Spanning Tree (MST)

 1.2. Complete Link (CL)

 1.3. Average Link (AL)

 1.4. Ward, or other similarity based algorithms

2. (Hyper) Graph Partitioning (Strehl & Ghosh, 2002)

 2.1. Hyper Graph Partition Algorithm (HGPA)

 2.2. Meta CLustering Algorithm (MCLA)

 2.3. Clustering Similarity Partition Algorithm (CSPA)

3. Information-theoretic methods, e.g. Quadratic Mutual Information (Topchy et al. 2003a)

4. Voting Approach (Dudoit & Fridlyand,2001)

5. Mixture Model (Topchy et al. 2003b)

Figure 5.1 Different approaches to clustering combination

 147

Figure 5.2 Taxonomy of different approaches to clustering combination

It is a long-standing goal of clustering research to design scalable and efficient

algorithms for large datasets (Zhang et al., 1996). One solution to the scaling problem is

the parallelization of clustering by sharing processing among different processors (Zhang

et al., 2000; Dhillon & Modha, 2000). Recent research in data mining has considered a

fusion of the results from multiple sources of data or from data features obtained in a

distributed environment (Park & Kargupta, 2003). Distributed data clustering deals with

the combination of partitions from many data subsets (usually disjoint). The combined

final clustering can be constructed centrally either by combining explicit cluster labels of

data points or, implicitly, through the fusion of cluster prototypes (e.g., centroid-based).

We analyze the first approach, namely, the clustering combination via consensus

functions operating on multiple labelings of the different subsamples of a data set. This

Clustering Ensembles Approaches

Generative mechanism Consensus function

Different built-in initialization

 Co-association-based

Voting approach

Hyper (graph)
partitioning

Different
algorithms

Mixture Model (EM)

CSPA

HGPA

MCLA

Single link

Comp. link

Avg. link

Information
Theoretic approach

Others …
Different parameters

Different subsets of features

Different subsets
of objects

Deterministic

Resampling

Projecting data onto different subspaces

One
algorithm

 148

study seeks to answer the question of the optimal size and granularity of the component

partitions.

5.3 Non-adaptive algorithms

Bootstrap (sampling with replacement) and subsampling (without replacement) can

discern various statistics from replicate subsets of data while the samples in both cases

are independent of each other. Our goal is to obtain a reliable clustering with measurable

uncertainty from a set of different k-means partitions. The key idea of the approach is to

integrate multiple partitions produced by clustering of pseudo-samples of a data set.

Clustering combinations can be formalized as follows. Let D be a data set of N data

points in d-dimensional space. The input data can be represented as an N × d pattern

matrix or N × N dissimilarity matrix, potentially in a non-metric space. Suppose that X =

{X1,…,XB} is a set of B bootstrap samples of size N or subsamples of size S < N. A

chosen clustering algorithm is run on each of the samples in X, which results in B

partitions Π={π1, π2,…, πB}. Each component partition in Π is a set of non-overlapping

and exhaustive clusters with πi={ iC1 , iC2 ,…, i
ikC)(}, Xi = i

ik
i CC)(1 ...UU , ∀πi, where k(i) is

the number of clusters in the i-th partition.

The problem of combining partitions is to find a new partition σ ={C1,…,CM} of the

entire data set D given the partitions in Π, such that the data points in any cluster of σ are

more similar to each other than to points in different clusters within σ. We assume that

the number of clusters, M, in the consensus clustering is predefined and can be different

from the number of clusters, k, in the ensemble partitions. In order to find the target

partition σ, one needs a consensus function utilizing information from the partitions {πi}.

 149

Several known consensus functions (Fred & Jain, 2002; Strehl & Ghosh, 2002; Topchy et

al., 2003a) can be employed to map a given set of partitions Π={π1, π2,…, πB} to the

target partition, σ, in our study.

The similarity between two objects, x and y, is defined as follows:

∑
=

=
B

i
ii yx

B
yxsim

1
))(),((1),(ππδ ,

⎩
⎨
⎧

≠
=

=
ba
ba

ba
if,0
if,1

),(δ (5.3)

Similarity between a pair of objects simply counts the number of clusters shared by the

objects in the partitions {π1,…, πB}. Under the assumption that diversity comes from

independent resampling, two families of algorithms can be proposed for integrating

clustering components (Minaei-Bidgoli et al., 2004a,b).

5.3.1 Similarity-based algorithm

The first algorithm family is based on the co-association matrix, and employs a group

of hierarchical clustering algorithms to find the final target partition. In this type,

similarity-based clustering algorithms are used as the consensus function, Γ. Hierarchical

clustering consensus functions with single-, complete-, and average-linkage criteria were

used to obtain a target consensus clustering, σ. The pseudocode of these algorithms is

shown in Figure 5.3.

 150

Input: D – the input data set N points
B – number of partitions to be combined
M – number of clusters in the final partition, σ
k – number of clusters in the components of the combination
Γ – a similarity-based clustering algorithm
for j=1 to B
 Draw a random pseudosample Xj
 Cluster the sample Xj: π (i)←k-means({Xj})
 Update similarity values (co-association matrix) for all patterns in Xj
end
Combine partitions via chosen Γ: σ ←Γ (P)
Validate final partition, σ (optional)
return σ // consensus partition

Figure 5.3 First algorithms for clustering ensemble, based on co-association
matrix and using different similarity-based consensus functions

5.3.2 Algorithms based on categorical clustering

The second family of algorithms for achieving clustering combination is based on

new features extracted through the partitioning process. In this approach, one can view

consensus clustering as clustering in a space of new features induced by the set, Π. Each

partition, πi, represents a feature vector with categorical values. The cluster labels of each

object in different partitions are treated as a new feature vector, a B-tuple, given B

different partitions in Π.

 151

 Table 5.1 (a) Data points and feature values, N rows and d columns. Every row
of this table shows a feature vector corresponding to N points. (b) Partition labels

for resampled data, n rows and B columns.
(a)

Data Features
X1 x11 x12 … x1j … x1d
X2 x21 x22 … x2j … x2d
… … … … … … …
Xi xi1 xi2 … xij … xid
… … … … … … …
XN xN1 xN2 … xNj … xNd

(b)

Data Partitions Labels
X1 π1(x1) π2(x1) … πj(x1) … πB(x1)
X2 π1(x2) π2(x2) … πj(x2) … πB(x2)
… … … … … … …
Xi π1(xi) π2(xi) … πj(xi) … πB(xi)
… … … … … … …
XN π1(xN) π2(xN) … πj(xN) … πB(xN)

Therefore, instead of the original d attributes, which are shown in Table 5.1(a), the

new feature vectors from a table with N rows and B columns (Table 5.1(b)) are utilized,

where each column corresponds to the results of mapping a clustering algorithm (k-

means) onto the resampled data and every row is a new feature extracted vector, with

categorical (nominal) values. Here, πj(xi) denotes the label of object xi in the j-th partition

of Π. Hence the problem of combining partitions becomes a categorical clustering

problem.

 152

Input: D – the input data set N points
B - number of partitions to be combined
M – number of clusters in the final partition σ
k – number of clusters in the components of the combination
Γ - consensus function operating with categorical features
Reference Partition ← k-means(D)
for i=1 to B

 Draw a random pseudo-sample Xj
 Cluster the sample Xj: π (i) ← k-means({Xj})
 Store partition πi

end
Re-label (if necessary)
Apply consensus function Γ on the set of partition labels, Π, to find final partition σ
Validate final partition σ (optional)
return σ // consensus partition

Figure 5.4 Algorithms for clustering ensemble based on categorical clustering

The parameter k in both algorithms is the number of clusters in every component

partition. If the value of k is too large then the partitions will overfit the data set, and if k

is too small then the number of clusters may not be large enough to capture the true

structure of data set. In addition, if the total number of clusterings, B, in the combination

is too small then the effective sample size for the estimates of distances between co-

association values is also insufficient, resulting in a larger variance. In the case of the

subsampling algorithm (without replacement), the right choice of sample size S is closely

related to the value of k and the value of B and proper setting of S is required to reach

convergence to the true structure of the data set. The algorithmic parameters will be

discussed in section 6. In the rest of this chapter “k” stands for number of clusters in

every partition, “B” for number of partitions/pseudosamples (in both the bootstrap and

the subsampling algorithms), and “S” for the sample size.

 153

5.4 Consensus functions

A consensus function maps a given set of partitions Π = {π1,…, πB} to a target

partition σ. In this experiment we have employed four types of consensus functions:

5.4.1 Co-association based functions

This consensus function operates on the co-association matrix. Similarity between

points (co-association values) can be estimated by the number of clusters shared by two

points in all the partitions of an ensemble. Then, numerous hierarchical agglomerative

algorithms (criteria) can be applied to the co-association matrix to obtain the final

partition, including Single Link (SL), Average Link (AL) and Complete Link (CL) (Jain

& Dubes, 1988). There are three main drawbacks to this approach.

 First, it has a quadratic computational complexity in the number of patterns and

features O(kN2d2) (Duda et al., 2001), where k is the number of clusters, N is the

number of data points, and d is the number of features.

 Second, there are no established guidelines for which clustering algorithm should be

applied, e.g. single linkage or complete linkage.

 Third, an ensemble with a small number of partitions may not provide a reliable

estimate of the co-association values (Topchy et al. 2003b).

5.4.2 Quadratic Mutual Information Algorithm (QMI)

 Assuming that the partitions are independent, a consensus function based on k-

means clustering in the space of standardized features can effectively maximize a

generalized definition of mutual information (Topchy et al., 2003a). The complexity of

this consensus function is O(kNB), where k is the number of clusters, N is the number of

 154

items, and B is the number of partitions. Though the QMI algorithm can be potentially

trapped in a local optimum, its relatively low computational complexity allows the use of

multiple restarts in order to choose a quality consensus solution with minimum intra-

cluster variance.

5.4.3 Hypergraph partitioning

The clusters could be represented as hyperedges on a graph whose vertices

correspond to the data points to be clustered. The problem of consensus clustering is then

reduced to finding the minimum-cut of a resulting hypergraph. The minimum k-cut of

this hypergraph into k components gives the required consensus partition (Strehl &

Ghosh, 2002). Hypergraph algorithms seem to work effectively for approximately

balanced clusters. Though the hypergraph partitioning problem is NP-hard, efficient

heuristics to solve the k-way min-cut partitioning problem are known, i.e. the complexity

of CSPA, HGPA and MCLA is estimated in Strehl & Ghosh (2002) as O(kN2B), O(kNB),

and O(k2NB2), respectively. These hypergraph algorithms are described in Strehl &

Ghosh (2002) and their corresponding source codes are available at

http://www.strehl.com. A drawback of hypergraph algorithms is that they seem to work

the best for nearly balanced clusters (Topchy et al., 2003b).

5.4.4 Voting approach

In the previous algorithms there is no need to explicitly solve the correspondence

problem between the labels of known and derived clusters. The voting approach attempts

to solve the correspondence problem and then uses a majority vote to determine the final

consensus partition (Dudoit & Fridlyand, 2003). The main idea is to permute the cluster

 155

labels such that the best agreement between the labels of two partitions is obtained. All

the partitions from the ensemble must be re-labeled according to a fixed reference

partition. The complexity of this process is O(k!), which can be reduced to O(k3) if the

Hungarian method is employed for the equivalent minimal weight bipartite matching

problem.

All the partitions in the ensemble can be re-labeled according to their best agreement

with some chosen reference partition. A meaningful voting procedure assumes that the

number of clusters in every given partition is the same as in the target partition. This

requires that the number of clusters in the target consensus partition is known (Topchy et

al. 2003b).

The performance of all these consensus methods is empirically analyzed as a

function of two important parameters: the type of sampling process (sample redundancy)

and the granularity of each partition (number of clusters).

5.5 Critical issues in resampling

Let us emphasize the challenging points of using resampling techniques for

maintaining diversity of partitions and estimation of co-association values.

5.5.1 Variable number of samples

There is no essential difference between bootstrap and subsampling algorithms with

regard to the diversity of the data samples. In both cases the pseudosample can be

incomplete (missing some objects). In bootstrap one has no control over the number of

distinct objects in a sample, while in subsampling the size of a pseudosample can be

 156

much smaller than the original sample size. On the average, 37% of objects are not

included into a bootstrap sample (Hastie et al., 2001).

5.5.2 Repetitive data points (objects)

 In resampling with replacement (bootstrap) some of the data points can be drawn

multiple times. However, in computing the co-association matrix, only one copy of a data

point should contribute to the co-association similarity. Hence, for repeated objects, we

count each pair of objects only once. This problem does not appear in the case of

subsampling

5.5.3 Similarity estimation

Co-association values require adjustment when bootstrap partitions are used.

Typically the similarity value between the objects x and y, sim(x,y), is calculated by

counting the number of shared clusters in all the given partitions (Eq. 5.4). This is

justified when each possible pair of objects appears the same number of times in these

partitions. However, in bootstrap, different objects can appear in a different number of

samples. Therefore, the effective sample size for a pair of objects may no longer be equal

to B. Hence, co-association values should be computed as following:

∑
=

=
R

i
ii yPxP

R
yxsim

1
))(),((1),(δ , (5.4)

where R is the number of bootstrap samples containing both x and y, and the sum is taken

over such samples.

 157

5.5.4 Missing labels

In both bootstrap and subsampling, some of the objects are missed in drawn samples.

When one uses co-association based methods, this poses no difficulty because the co-

association values are only updated for existing objects. However, missing labels can

cause a number of problems for other consensus functions. For example, when an object

is missing in a bootstrap sample, there will be no label assigned to it after running the

clustering algorithm. Thus, special consideration of the missing labels is necessary during

the process of re-labeling, before running a consensus function.

5.5.5 Re-labeling

We must consider how to re-label two bootstrap samples with missing values. When

the number of objects in the drawn samples is too small, this problem becomes harder.

For example, consider four partitions, P1, …,P4 for five data points x1, …,x5 as shown in

Table 5.2.

Table 5.2 An illustrative example of re-labeling difficulty involving five data
points and four different clusterings of four bootstrap samples. The numbers

represent the labels assigned to the objects and the “?” shows the missing labels of
data points in the bootstrapped samples.

 P1 P2 P3 P4
x1 1 ? 2 3
x2 1 2 3 1
x3 ? 2 ? 2
x4 ? ? 1 ?
x5 2 1 3 1

One can re-label the above partitions in relation to some reference partition.

However, the missing labels should not be considered in the re-labeling process.

Therefore, if the reference partition is P1, and we want to re-label P2, then only the data

 158

points x2 and x5 participate in the re-labeling process. Similarly, if P3 is re-labeled based

on the reference P1, then x1, x2 and x3 are used in the Hungarian algorithm to find the best

match. Once the best agreement among the given labels is found then all the objects in

the partition, except those with missing labels, are re-labeled.

5.5.6 Adaptation of the k-means algorithm

The core of the QMI consensus function is the k-means algorithm, which utilizes a

special transformation of the space of N × B extracted labels. Since no labels are assigned

to the missing objects using the clustering algorithm, the missing objects should not be

considered in the k-means algorithm that calculates the mutual information among the

obtained labels and the target partition. A revised and extended version of the k-means

algorithm was developed such that it can handle the missing coordinates, as described in

Jain & Dubes (1988) and Dixon (1979). The k-means algorithm calculates the Euclidean

distances between every object and the cluster centers. If some coordinates are missing

then those coordinates are ignored in the calculation. The experiments in this study used

this modification of the k-means for the QMI algorithm.

5.6 Adaptive sampling scheme

While there are many ways to construct diverse data partitions for an ensemble, not

all of them easily generalize to adaptive clustering. The adaptive approach (Topchy et al.,

2004) extends the studies of ensembles whose partitions are generated via data

resampling (Dudoit & Fridlyand 2003; Fisher & Buhmann, 2003; Minaei et al, 2004).

Though, intuitively, clustering ensembles generated by other methods also can be

boosted. The adaptive partition generation mechanism (Brieman, 1998) is aimed at

 159

reducing the variance of inter-class decision boundaries. Unlike the regular bootstrap

method that draws subsamples uniformly from a given data set, adaptive sampling favors

points from regions close to the decision boundaries. At the same time, the points located

far from the boundary regions are sampled less frequently. It is instructive to consider a

simple example that shows the difference between ensembles of bootstrap partitions with

and without the weighted sampling. Figure 5.5 shows how different decision boundaries

can separate two natural classes depending on the sampling probabilities. Here we

assume that the k-means clustering algorithm is applied to the subsamples.

Initially, all the data points have the same weight, namely, the sampling

probability 1
Nip = , i∈[1,…,N]. Clearly, the main contribution to the clustering error is

due to the sampling variation that causes inaccurate inter-cluster boundaries. Solution

variance can be significantly reduced if sampling is increasingly concentrated only on the

subset of objects at iterations t2 > t1 > t0, as demonstrated in Figure 5.5.

 The key issue in the design of the adaptation mechanism is the updating of

probabilities. We have to decide how and which data points should be sampled as we

collect more and more clusterings in the ensemble. A consensus function based on the co-

association values (Jain & Fred, 2002) provides the necessary guidelines for adjustments

of sampling probabilities. Remember that the co-association similarity between two data

points, x and y, is defined as the number of clusters shared by these points in the

partitions of an ensemble, Π:

 160

Figure 5.5 Two possible decision boundaries for a 2-cluster data set. Sampling
probabilities of data points are indicated by gray level intensity at different

iterations (t0 < t1 < t2) of the adaptive sampling. True components in the 2-class
mixture are shown as circles and triangles.

Table 5.3. Consistent re-labeling of 4 partitions of 12 objects.

A consensus clustering can be found by using an agglomerative clustering algorithm

(e.g., single linkage) applied to such a co-association matrix constructed from all the

points. The quality of the consensus solution depends on the accuracy of similarity values

as estimated by the co-association values. The least reliable co-association values come

from the points located in the problematic areas of the feature space. Therefore, our

t0 t1 t2

 161

adaptive strategy is to increase the sampling probability for such points as we proceed

with the generation of different partitions in the ensemble.

The sampling probability can be adjusted not only by analyzing the co-association

matrix, which is of quadratic complexity O(N2), but also by applying the less expensive

O(N + K3) estimation of clustering consistency for the data points. Again, the motivation

is that the points with the least stable cluster assignments, namely those that frequently

change the cluster they are assigned to, require an increased presence in the data

subsamples. In this case, a label correspondence problem must be approximately solved

to obtain the same labeling of clusters throughout the ensemble’s partitions. By default,

the cluster labels in different partitions are arbitrary. To make the correspondence

problem more tractable, one needs to re-label each partition in the ensemble using some

fixed reference partition. Table 5.3 illustrates how four different partitions of twelve

points can be re-labeled using the first partition as a reference.

At the (t+1)-th iteration, when some t different clusterings are already included in the

ensemble, we use the Hungarian algorithm for minimal weight bipartite matching

problem in order to re-label the (t+1)-th partition. As an outcome of the re-labeling

procedure, we can compute the consistency index of clustering for each data point.

Clustering consistency index CI at iteration t for a point x is defined as the ratio of the

maximal number of times the object is assigned in a certain cluster to the total number of

partitions:

[]labelsclusterL

B

i
i Lx

B
xCI

_1
),((max1)(

∈= ⎭
⎬
⎫

⎩
⎨
⎧

= ∑ πδ (5.5)

The values of consistency indices are shown in Table 5.3 after four partitions were

 162

generated and re-labeled. We should note that clustering of subsamples of the data set, D,

does not provide the labels for the objects missing (not drawn) in some subsamples. In

this situation, the summation in Eq. (5.5) skips the terms containing the missing labels.

The clustering consistency index of a point can be directly used to compute its

sampling probability. In particular, the probability value is adjusted at each iteration as

follows:

1 () (() 1 ()),t tp x Z p x C I xα+ = + − (5.6)

where α is a discount constant for the current sampling probability and Z is a

normalization factor. The discount constant was set to α=0.3 in our experiments. The

proposed clustering ensemble algorithm is summarized in pseudocode in Figure 5.6:

Input: D – data set of N points
B – number of partitions to be combined
M – number of clusters in the consensus partition σ
K – number of clusters in the partitions of the ensemble
Γ – chosen consensus function operating on cluster labels
p – sampling probabilities (initialized to 1/N for all the points)
Reference Partition ← k-means(D)
for i=1 to B

 Draw a subsample Xi from D using sampling probabilities p
 Cluster the sample Xi: π(i) ← k-means(Xi)
 Re-label partition π(i) using the reference partition
 Compute the consistency indices for the data points in D
 Adjust the sampling probabilities p

end
Apply consensus function Γ to ensemble Π to find the partition σ
Validate the target partition σ (optional)
return σ // consensus partition

Figure 5.6 Algorithms for adaptive clustering ensembles

 163

5.7 Experimental study on non-adaptive approaches

The experiments were performed on several data sets, including two challenging

artificial problem, the “Halfrings” data set, and the “2-Spiral” data set, two data sets from

UCI repository, the “Iris” and “Wine” and two other real world data set, the “LON” and

“Star/Galaxy” data sets. A summary of data set characteristics is shown in Table 5.4.

-1 -0.5 0 0.5 1 1.5 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-6 -4 -2 0 2 4 6
-8

-6

-4

-2

0

2

4

6

8

 Figure 5.7 “Halfrings” data set with 400 patterns (100-300 per class) , “2-

Spirals” dataset with 200 patterns (100-100 per class)

Table 5.4. A summary of data sets characteristics

 No. of
Classes

No. of
Features

No. of
Patterns

Patterns per
class

Star/Galaxy 2 14 4192 2082-2110
Wine 3 13 178 59-71-48
LON 2 6 227 64-163
Iris 3 4 150 50-50-50

3-Gaussian 3 2 300 50-100-150
Halfrings 2 2 400 100-300
2-Spirals 2 2 200 100-100

5.7.1 Data sets

The Halfrings and 2-Spiral data set, as shown in Figure 5.7, consist of two clusters,

though the clusters are unbalanced with 100- and 300-point patterns in the Halfrings data

set and balanced in the 2-Spiral. The k-means algorithm by itself is not able to detect the

 164

two natural clusters since it implicitly assumes hyperspherical clusters. 3-Gaussian is a

simulated data set that includes three unbalanced classes with 50, 100, and 150 data

points. The Wine data set described in Aeberhard et al. (1992) contains the value of the

chemical composition of wines grown in the same region but derived from three different

cultivars. The patterns are described by the quantities of thirteen constituents (features)

found in each of the three types of wines. There are 178 samples in total.

The LON data set (Minaei & Punch, 2003) is extracted from the activity log in a

web-based course using an online educational system developed at Michigan State

University (MSU): the Learning Online Network with Computer-Assisted Personalized

Approach (LON-CAPA). The data set includes the student and course information on an

introductory physics course (PHY183), collected during the spring semester 2002. This

course included 12 homework sets with a total of 184 problems, all of which were

completed online using LON-CAPA. The data set consists of 227 student records from

one of the two groups: “Passed” for the grades above 2.0, and “Failed” otherwise. Each

sample contains 6 features.

The Iris data set contains 150 samples in 3 classes of 50 samples each, where each

class refers to a type of iris plant. One class is linearly separable from the other two, and

each sample has four continuous-valued features. The Star/Galaxy data set described in

Odewahn (1992) has a significantly larger number of samples (N=4192) and features

(d=14). The task is to separate observed objects into stars or galaxies. Domain experts

manually provided true labels for these objects.

For all these data sets the number of clusters, and their assignments, are known.

Therefore, one can use the misassignment (error) rate of the final combined partition as a

 165

measure of performance of clustering combination quality. One can determine the error

rate after solving the correspondence problem between the labels of derived and known

clusters. The Hungarian method for solving the minimal weight bipartite matching

problem can efficiently solve this label correspondence problem.

5.7.2 The role of algorithm's parameters

The bootstrap experiments probe the accuracy of partition combination as a function

of the resolution of partitions (value of k) and the number of partitions, B (number of

partitions to be merged).

One of our goals was to determine the minimum number of bootstrap samples, B,

necessary to form high-quality combined cluster solutions. In addition, different values of

k in the k-means algorithm provide different levels of resolution for the partitions in the

combinations. We studied the dependence of the overall performance on the number of

clusters, k. In particular, clustering on the bootstrapped samples was performed for the

values of B in the range [5, 1000] and the values of k in the interval [2, 20].

Analogously, the size of the pseudosample, S, in subsampling experiments is another

important parameter. Our experiments were performed with different subsample sizes in

the interval [N/20, 3N/4], where N is the size of the original data sample. Thus, in the

case of the Halfrings, S was taken in the range [20, 300] where the original sample size is

N=400, while in the case of the Galaxy data set, parameter S was varied in the range [200,

3000] where N=4192. Therefore, in resampling without replacement, we analyzed how

the clustering accuracy was influenced by three parameters: number of clusters, k, in

every clustering, number of drawn samples, B, and the sample size, S. Note that all the

 166

experiments were repeated 20 times and the average error rate for 20 independent runs is

reported, except for the Star/Galaxy data where 10 runs were performed.

The experiments employed eight different consensus functions: co-association based

functions (single link, average link, and complete link), hypergraph algorithms (HGPA,

CSPA, MCLA), the QMI algorithm, as well as a Voting-based function.

5.7.3 The Role of Consensus Functions (Bootstrap algorithm)

Perhaps the single most important design element of the combination algorithm is

the choice of a consensus function. In the Halfrings data set the true structure of the data

set (100% accuracy) was obtained using co-association based consensus functions (both

single and average link) in the case of k=15 and number of partitions taking part in the

combination where B≥100. None of the other six consensus methods converged to an

acceptable error rate for this data set.

 For the Wine data set an optimal accuracy of 73% was obtained with both the

hypergraph-CSPA algorithm and co-association based method using average link (AL)

with different parameters as shown in Table 5.6. For the LON data set the optimal

accuracy of 79% was achieved only by co-association-based (using the AL algorithm)

consensus function. This accuracy is comparable to the results of the k-NN classifier,

multilayer perceptron, naïve Bayes classifier, and some other algorithms when the “LON”

data set is classified in a supervised framework based on labeled patterns (Minaei &

Punch, 2003).

 167

0

10

20

30

40

50

60

70

80

5 10 20 50 100 250

Number of Partitions, B

of

 m
is

as
si

gn
ed

 p
at

te
rn

s

k = 2
k = 3
k = 4
k = 5
k = 10

Iris, MCLA

Figure 5.8 “Iris” data set. Bootstrapping for fixed consensus function MCLA,

different B, and different values of k.

For the “Iris” data set, the hypergraph consensus function, HPGA algorithm led to

the best results when k ≥ 10. The AL and the QMI algorithms also gave acceptable

results, while the single link and average link did not demonstrate a reasonable

convergence. Figure 5.8 shows that the optimal solution could not be found for the Iris

data set with k in the range [2, 5], while the optimum was reached for k ≥ 10 with only

B≥10 partitions.

For the Star/Galaxy data set the CSPA function (similarity based hypergraph

algorithm) could not be used due to its computational complexity because it has a

quadratic complexity in the number of patterns O(kN2B).

The HGPA function and SL did not converge at all, as shown in Table 5.5. Voting

and complete link also did not yield optimal solutions. However, the MCLA, the QMI

 168

and the AL functions led to an error rate of approximately 10%, which is better than the

performance of an individual k-means result (21%).

 The major problem in co-association based functions is that they are

computationally expensive. The complexity of these functions is very high (O(kN2d2))

and therefore, it is not effective to use the co-association based functions as a consensus

function for the large data sets.

Table 5.5 “Star/Galaxy” data experiments. Average error rate (% over 10
runs) of clustering combination using resampling algorithms with different number

of components in combination B, resolutions of components, k, and types of
consensus functions.

K B QMI MCLA SL AL CL Voting
2 5 18.5 19.4 49.7 49.7 49.7 20.4
2 10 18.7 18.8 49.6 49.6 49.6 19.5
2 20 18.5 18.9 49.6 24.4 49.7 19
2 50 18.7 18.8 49.6 18.8 49.7 18.9
2 100 18.8 18.8 49.7 18.8 18.8 18.9
3 5 13.4 15.5 49.7 49.7 49.7 -
3 10 17.8 15.6 49.6 49.6 49.6 -
3 20 11.5 15.3 49.7 18.8 42.9 -
3 50 13.3 15.4 49.7 11 35.9 -
3 100 11 15.4 49.7 11 48.2 -
4 5 15.2 13.1 49.7 49.7 49.7 -
4 10 11.4 14.5 49.6 49.7 49.7 -
4 20 14 13.7 49.6 24.3 48.7 -
4 50 22.2 11.9 49.7 10.7 48 -
4 100 11 11.9 49.7 10.7 47.9 -
5 5 14.9 13.8 49.7 49.7 49.7 -
5 10 14.9 13.1 49.7 47.9 49.6 -
5 20 10.7 13.4 49.6 11 49.7 -
5 50 11.4 13.4 49.7 10.8 48.7 -
5 100 11 12.5 49.7 10.9 48 -

Note that the QMI algorithm did not work well when the number of partitions

exceeded 200, especially when the value of k was large. This might be due to the fact that

the core of the QMI algorithm operates in k×B–dimensional space. The performance of

 169

the k-means algorithm degrades considerably when B is large (>100) and, therefore, the

QMI algorithm should be used with smaller values of B.

5.7.4 Effect of the Resampling method (Bootstrap vs.

Subsampling)

In subsampling the smaller the S the lower the complexity of the k-means clustering,

which therefore results in much smaller complexity in the co-association based consensus

functions, which is super-linear N. Comparing the results of the bootstrap and the

subsampling methods shows that when the bootstrap technique converges to an optimal

solution, that optimal result could be obtained by the subsampling as well, but with a

critical size of the data points. For example, in the Halfrings data set the perfect

clustering can be obtained using a single-link consensus function with k=10, B=100 and

S=200 (1/5 data size) as shown in Figure 5.9 (compare to the bootstrap results in table

5.6) while this perfect results can be achieved with k=15, B = 50, and S = 80 (1/5 data

size). Thus, there is a trade off between the number of partitions B and the sample size S.

This comparison shows that the subsampling method can be much faster than the

bootstrap (N=400) in relation to the computational complexity.

 170

0

50

100

150

200

250

20 40 80 100 200 300

Sample size, S

of

 m
is

as
si

gn
ed

 p
at

te
rn

s

Single.link
Avg.link
Comp.link
HPGA
MCLA
CSPA
QMI

Halfrings, k =10, B =100

Figure 5.9 “Halfrings” data set. Experiments using subsampling with k=10 and

B=100, different consensus function, and sample sizes S.

The results of subsampling for "Star/Galaxy" data set as shown in Figure 5.10, shows

that in resolution k=3 and number of partitions B=100, with only sample size S = 500 (1/8

of the entire data size) one can reach 89% accuracy, the same results with entire data set

in the bootstrap method. It shows that for this large data set, a small fraction of data can

be representative of the entire data set, and this would be computationally very interesting

in distributed data mining.

 171

0

500

1000

1500

2000

2500

200 500 1000 1500 2000 3000

Sample size, S

of

 m
is

as
si

gn
ed

 p
at

te
rn

s

Avg.link
QMI
HPGA
MCLA

Star/Galaxy, k =4, B =50

Figure 5.10 “Star/Galaxy” data set. Experiments using subsampling, with k = 4

and B = 50 and different consensus function and sample sizes S.

Note that in both the bootstrap and the subsampling algorithms all of the samples are

drawn independently, and thus the resampling process could be performed in parallel.

Therefore, using the B parallel processes, the computational process becomes B times

faster.

Table 5.6 shows the error rate of classical clustering algorithms, which are used in

this research. The error rates for the k-means algorithm were obtained as the average over

100 runs, with random initializations for the cluster centers, where value of k was fixed to

the true number of clusters. One can compare it to the error rate of ensemble algorithms

in Table 5.7.

 172

 Table 5.6 The average error rate (%) of classical clustering algorithms. An
average over 100 independent runs is reported for the k-means algorithms

Data set k-means Single Link Complete Link Average Link
Halfrings 25% 24.3% 14% 5.3%

Iris 15.1% 32% 16% 9.3%
Wine 30.2% 56.7% 32.6% 42%
LON 27% 27.3% 25.6% 27.3%

Star/Galaxy 21% 49.7% 44.1% 49.7%

Table 5.7 Summary of the best results of Bootstrap methods

Data set Best Consensus
function(s)

Lowest Error
rate obtained Parameters

Halfrings Co-association, SL
Co-association, AL

0%
0%

k ≥ 10, B. ≥ 100
k ≥ 15, B ≥ 100

Iris Hypergraph-HGPA 2.7% k ≥ 10, B ≥ 20
Hypergraph-CSPA 26.8% k ≥ 10, B ≥ 20 Wine Co-association, AL 27.9% k ≥ 4, B ≥ 100

LON Co-association, CL 21.1% k ≥ 4, B ≥ 100

Galaxy/ Star
Hypergraph-MCLA
Co-association, AL
Mutual Information

9.5%
10%
11%

k ≥ 20, B ≥ 10
k ≥ 10, B ≥ 100
k ≥ 3, B ≥ 20

 173

 Table 5.8 Subsampling methods: trade-off among the values of k, the number
of partitions B, and the sample size, S. Last column denote the percentage of sample

size regarding the entire data set. (Bold represents most optimal)

Data set
Best

Consensus
function(s)

Lowest
Error
rate

k B S
% of
entire
data

SL 0% 10 100 200 50%
SL 0% 10 500 80 20%
AL 0% 15 1000 80 20% Halfrings

AL 0% 20 500 100 25%
HGPA 2.3% 10 100 50 33% Iris HGPA 2.1% 15 50 50 33%

AL 27.5% 4 50 100 56%
HPGA 28% 4 50 20 11% Wine
CSPA 27.5% 10 20 50 28%

CL 21.5% 4 500 100 44% LON CSPA 21.3% 4 100 100 44%
MCLA 10.5% 10 50 1500 36%
MCLA 11.7% 10 100 200 5% Galaxy/

Star AL 11% 10 100 500 12%

The optimal size S and granularity of the component partitions derived by

subsampling are reported in Table 5.8. We see that the accuracy of the resampling

method is very similar to that of the bootstrap algorithm, as reported in Table 5.6. This

level of accuracy was reached with remarkably smaller sample sizes and much lower

computational complexity! The trade-off between the accuracy of the overall clustering

combination and computational effort for generating component partitions is shown in

table 8, where we compare accuracy of consensus partitions. The most promising result is

that only a small fraction of data (i.e., 12% or 5% for the “Star/Galaxy” data set) is

required to obtain the optimal solution of clustering, both in terms of accuracy and

computational time.

The question of the best consensus function remains open for further study. Each

consensus function explores the structure of data set in different ways, thus its efficiency

greatly depends on different types of existing structure in the data set. One can suggest

 174

having several consensus functions and then combining the consensus function results

through maximizing mutual information (Strehl & Ghosh; 2002), but running different

consensus functions on large data sets would be computationally expensive.

5.8 Empirical study and discussion of Adaptive approach

The experiments were conducted on artificial and real-world data sets (“Galaxy”,

“half-rings”, “wine”, “3-gaussian”, “Iris”, “LON”), with known cluster labels, to validate

the accuracy of consensus partition. A comparison of the proposed adaptive and previous

non-adaptive (Minaei et al. 2004) ensemble is the primary goal of the experiments. We

evaluated the performance of the clustering ensemble algorithms by matching the

detected and the known partitions of the datasets. The best possible matching of clusters

provides a measure of performance expressed as the misassignment rate. To determine

the clustering error, one needs to solve the correspondence problem between the labels of

known and derived clusters. Again, the Hungarian algorithm was used for this purpose.

The k-means algorithm was used to generate the partitions of samples of size N drawn

with replacement, similar to bootstrap, albeit with dynamic sampling probability. Each

experiment was repeated 20 times and average values of error (misassignment) rate are

shown in Figure 5.11.

Consensus clustering was obtained by four different consensus functions:

hypergraph-based MCLA and CSPA algorithms (Strehl & Ghosh; 2002), quadratic

mutual information (Topchy et al., 2003a) and EM algorithm based on mixture model

(Topchy et al., 2003b). Herein, we report only the key findings. The main observation is

that adaptive ensembles slightly outperform the regular sampling schemes on most

benchmarks. Typically, the clustering error decreased by 1-5%. Accuracy improvement

 175

depends on the number of clusters in the ensemble partitions (k). Generally, the adaptive

ensembles were superior for values of k larger than the target number of clusters, M, by

1or 2. With either too small or too large a value of k, the performance of adaptive

ensembles was less robust and occasionally worse than corresponding non-adaptive

algorithms. A simple inspection of probability values always confirmed the expectation

that points with large clustering, uncertainty are drawn more frequently.

 176

96

98

100

102

104

106

108

110

25 50 75 100 125 150
of Patitions, B

of

 m
is

as
si

gn
ed

 p
at

te
rn

s Non-Adaptive

Adaptive

Halfrings data set, CSPA consensus, k=3

(a)

0

1

2

3

4

5

6

7

8

9

25 50 75 100 125 150
of Patitions, B

of

 m
is

as
si

gn
ed

 p
at

te
rn

s

Non-Adaptive

Adptive

3-Gaussian data set , k=4, CSPA

(b)

0

5

10

15

20

25

30

35

25 50 75 100 125 150
of Patitions, B

of

 m
is

as
si

gn
ed

 p
at

te
rn

s

Non-Adaptive

Adaptive

Wine data set, MI consensus, k=6,

(c)

500
505
510
515
520
525
530
535
540
545
550

25 50 75 100
of Patitions, B

of

 m
is

as
si

gn
ed

 p
at

te
rn

s

Non-Adaptive

Adaptive

Galaxy data set, MCLA consensus fubction, k=6

(d)

Figure 5.11 Clustering accuracy for ensembles with adaptive and non-adaptive
sampling mechanisms as a function of ensemble size for some data sets and selected

consensus functions.

Most significant progress was detected when combination consisted of 25-75

partitions. Large numbers of partitions (B>75) almost never lead to further improvement

in clustering accuracy. Moreover, for B>125 we often observed increased error rates

(except for the hypergraph-based consensus functions), due to the increase in complexity

of the consensus model and in the number of model parameters requiring estimation.

 177

5.9 Concluding remarks

A new approach to combine partitions is proposed by resampling of original data.

This study showed that meaningful consensus partitions for the entire data set of objects

emerge from clusterings of bootstrap and subsamples of small size. Empirical studies

were conducted on various simulated and real data sets for different consensus functions,

number of partitions in the combination and number of clusters in each component, for

both bootstrap (with replacement) and subsampling (without replacement). The results

demonstrate that there is a trade-off between the number of clusters per component and

the number of partitions, and the sample size of each partition needed in order to perform

the combination process converges to an optimal error rate.

The bootstrap technique was recently applied in (Dudoit & Fridlyand, 2003; Fisher

& Buhmann, 2003; Monti et al., 2003) to create a diversity in clusterings ensemble.

However, our work extends the previous studies by using a more flexible subsampling

algorithm for ensemble generation. We also provided a detailed comparative study of

several consensus techniques. The challenging points of using resampling techniques for

maintaining diversity of partitions were discussed in this chapter. We showed that there

exists a critical fraction of data such that the structure of entire data set can be perfectly

detected. Subsamples of small sizes can reduce costs and measurement complexity for

many explorative data mining tasks with distributed sources of data.

We have extended clustering ensemble framework by adaptive data sampling

mechanism for generation of partitions. We dynamically update sampling probability to

focus on more uncertain and problematic points by on-the-fly computation of clustering

 178

consistency. Empirical results demonstrate improved clustering accuracy and faster

convergence as a function of the number of partitions in the ensemble.

Further study of alternative resampling methods, such as the balanced (stratified) and

recentered bootstrap methods are critical for more generalized and effective results. This

work has bee published in (Minaei et al., 2004a; Minaei et al. 2004b, Topchy et al. 2004).

 152

Chapter 6 Association Analysis in LON-CAPA

A key objective of data mining is to uncover the hidden relationships among the

objects in a data set. Web-based educational technologies allow educators to study how

students learn and which learning strategies are most effective. Since LON-CAPA

collects vast amounts of student profile data, data mining and knowledge discovery

techniques can be applied to find interesting relationships between attributes of students,

assessments, and the solution strategies adopted by students. This chapter focuses on the

discovery of interesting contrast rules, which are sets of conjunctive rules describing

interesting characteristics of different segments of a population. In the context of web-

based educational systems, contrast rules help to identify attributes characterizing

patterns of performance disparity between various groups of students. We propose a

general formulation of contrast rules as well as a framework for finding such patterns.

We apply this technique to the LON-CAPA system.

6.1 Introduction

This chapter investigates methods for finding interesting rules based on the

characteristics of groups of students or assignment problems. More specifically, our

research is guided and inspired by the following questions: Can we identify the different

groups of students enrolled in a particular course based on their demographic data?

Which attribute(s) best explain the performance disparity among students over different

 153

sets of assignment problems? Are the same disparities observed when analyzing student

performance in different sections or semesters of a course?

We address the above questions using a technique called contrast rules. Contrast

rules are sets of conjunctive rules describing important characteristics of different

segments of a population. Consider the following toy example of 200 students who

enrolled in an online course. The course provides online reading materials that cover the

concepts related to assignment problems. Students may take different approaches to solve

the assignment problems. Among these students, 109 students read the materials before

solving the problems while the remaining 91 students directly solve the problems without

reviewing the materials. In addition, 136 students eventually passed the course while 64

students failed. This information summarized in a 2 × 2 contingency table as shown in

Table 6.1.

Table 6.1 A contingency table of student success vs. study habits for an online
course

 Passed Failed Total
Review materials 95 14 109

Do not review 41 50 91
Total 136 64 200

The table shows that there are interesting contrasts between students who review the

course materials before solving the homework problems and students who do not review

the materials. The following contrast rules can be induced from the contingency table:

Review materials⇒ Passed, s = 47.5%, c = 87.2%

Review materials⇒ Failed, s = 7.0%, c = 12.8%

Figure 6.1 A contrast rule extracted from Table 6.1

 154

where s and c are the support and confidence of the rules (Agrawal et al., 1993).

These rules suggest that students who review the materials are more likely to pass the

course. Since there is a large difference between the support and confidence of both rules,

the observed contrast is potentially interesting. Other examples of interesting contrast

rules obtained from the same contingency table are shown in Figures 6.2 and 6.3.

Passed⇒ Review materials, s = 47.5%, c = 69.9%

Failed ⇒ Review materials, s = 7.0%, c = 15.4%

 Figure 6.2 A contrast rule extracted from Table 6.1

Passed⇒ Review materials, s = 47.5%, c = 69.9%

Passed⇒ Do not review, s = 20.5%, c = 30.1%

Figure 6.3 A contrast rule extracted from Table 6.1

Not all contrasting rule pairs extracted from Table 6.1 are interesting, as the example

in Figure 6.4 shows.

Do not review ⇒ Passed, s = 20.5%, c = 45.1%

Do not review ⇒ Failed, s = 25.0%, c = 54.9%

Figure 6.4 A contrast rule extracted from Table 6.1

The above examples illustrate some of the challenging issues concerning the task of

mining contrast rules:

1. There are many measures applicable to a contingency table. Which

measure(s) yield the most significant/interesting contrast rules among

different groups of attributes?

 155

2. Many rules can be extracted from a contingency table. Which pair(s) of rules

should be compared to define an interesting contrast?

This chapter presents a general formulation of contrast rules and proposes a new

algorithm for mining interesting contrast rules. The rest of this chapter is organized as

follows: Section 6.2 provides a brief review of related work. Section 6.3 offers a formal

definition of contrast rules. Section 6.4 gives our approach and methodology to discover

the contrast rules. Section 6.5 describes the LON-CAPA data model and an overview of

our experimental results.

6.2 Background

In order to acquaint the reader with the use of data mining in online education, we

present a brief introduction of association analysis and measures for evaluating

association rules. Next, we explain the history of data mining in web-based educational

systems. Finally, we discuss previous work related to contrast rules.

6.2.1 Association analysis

Let I = {i1, i2, …, im} be the set of all items and T = {t1, t2, …, tN} the set of all

transactions where m is the number of items and N is the number of transactions. Each

transaction tj is a set of items such that tj ⊆ I. Each transaction has a unique identifier,

which is referred to as TID. An association rule is an implication statement of the form X

⇒ Y, where X ⊂ I, Y ⊂ I, and X and Y are disjoint, that is, X ∩ Y = ∅. X is called the

antecedent while Y is called the consequence of the rule (Agrawal et al., 1993; Agrawal

& Srikant, 1994).

 156

Support and confidence are two metrics, which are often used to evaluate the quality

and interestingness of a rule. The rule X ⇒ Y has support, s, in the transaction set, T, if

s% of transactions in T contains YX U . The rule has confidence, c, if c% of

transactions in T that contain X also contains Y. Formally, support is defined as shown in

Eq. (6.1),

where N is the total number of transactions, and confidence is defined in Eq. (6.2).

Another measure that could be used to evaluate the quality of an association rule is

presented in Eq. (6.3).

This measure represents the fraction of transactions that match the left hand side of a

rule.

Techniques developed for mining association rules often generate a large number of

rules, many of which may not be interesting to the user. There are many measures

proposed to evaluate the interestingness of association rules (Freitas, 1999; Meo, 2003).

Silberschatz and Tuzhilin (1995) suggest that interestingness measures can be categorized

into two classes: objective and subjective measures.

An objective measure is a data-driven approach for evaluating interestingness of

rules based on statistics derived from the observed data. In the literature different

N
YXsYXs)()(U

=⇒ , (6.1)

)(
)()(

Xs
YXsYXc U

=⇒ , (6.2)

geRuleCovera =
N
Xs)((6.3)

 157

objective measures have been proposed (Tan et al., 2004). Examples of objective

interestingness measure include support, confidence, correlation, odds ratio, and cosine.

Subjective measures evaluate rules based on the judgments of users who directly

inspect the rules (Silberschatz & Tuzhilin, 1995). Different subjective measures have

been addressed to discover the interestingness of a rule (Silberschatz & Tuzhilin, 1995).

For example, a rule template (Fu & Han, 1995) is a subjective technique that separates

only those rules that match a given template. Another example is neighborhood-based

interestingness (Dong & Li, 1998), which defines a single rule’s interestingness in terms

of the supports and confidences of the group in which it is contained.

6.2.2 Data mining for online education systems

Recently, several researchers have worked on the application of data mining to

examine or classify students’ problem-solving approaches within web-based educational

systems. For example, we previously developed tools for predicting the student

performance with respect to average values of student attributes versus the overall

problems of an online course (Minaei et al., 2003). Zaïane (2001) suggested the use of

web mining techniques to build an agent that recommends on-line learning activities in a

web-based course. Ma et al. (2000) focused on one specific task of using association rule

mining to select weak students for remedial classes. This previous work focused on

finding association rules with a specific rule consequent (i.e. a student is weak or strong).

Herein, we propose a general formulation of contrast rules as well as a framework for

finding such patterns.

 158

6.2.3 Related work

An important goal in data mining is the discovery of major differences among

segments of population. Bay and Pazzani (2001) introduced the notion of contrast sets as

a conjunction of attributes and values that differ “meaningfully” in their distribution

across groups. They used a chi-square test for testing the null hypothesis that contrast-set

support is equal across all groups. They developed the STUCCO (Search and Testing for

Understandable Consistent Contrast) algorithm to find significant contrast sets. Our work

represents a general formulation for contrast rules using different interestingness

measures. We show that alternative measures allow for different perspectives on the

process of finding interesting rules.

 Liu et al. (2001) have also used a chi-square test of independence as a principal

measure for both generating the association rules and identifying non-actionable rules.

Below, we briefly discuss the chi-square test of independence and one of its

shortcomings.

Chi-square testing is used as a method for verifying the independence or correlation

of attributes. The chi-square test compares observed frequencies with the corresponding

expected frequencies. The greater the difference between observed and expected

frequencies, the greater is the power of evidence in favor of dependence and relationship.

Let CT be a contingency table with K rows and L columns. The chi-square test for

independence is shown in Eq. (6.4) where 1≤i≤K, and 1≤j≤L, and degree of freedom is

(K-1)(L-1).

 (6.4) ∑ ∑
−

=
i j ij

ijij

E
EO 2

2)(
χ

 159

However, a drawback of this test is that the 2χ value is not invariant under the row-

column scaling property (Tan et al., 2004). For example, consider the contingency table

shown in Table 6.2(a). If 2χ is higher than a specific threshold (e.g. 3.84 at the 95%

significance level and degree of freedom 1), we reject the independence assumption. The

chi-square value corresponding to Table 6.2(a) is equal to 1.82. Therefore, the null

hypothesis is accepted. Nevertheless, if we multiply the values of that contingency table

by 10, a new contingency table is obtained as shown in Table 6.2(b). The 2χ value

increases to 18.2 (>3.84). Thus, we reject the null hypothesis. We expect that the

relationship between gender and success for both tables as being equal, even though the

sample sizes are different. In general, this drawback shows that 2χ is proportional to N.

Table 6.2 A contingency table proportional to table 6.1

(a) (b)
 Passed Failed Total Passed Failed Total

Male 40 49 89 Male 400 490 890
Female 60 51 111 Female 600 510 1110
Total 100 100 200 Total 1000 1000 2000

6.3 Contrast Rules

In this section, we introduce the notion of contrast rules. Let A and B be two itemsets

whose relationship can be summarized in a 2×2 contingency table as shown in Table 6.3.

Table 6.3 A contingency table for the binary case

 B B Total
A f11 f12 f1+
A f21 f22 f2+

Total f+1 f+2 N

 160

Let Ω be a set of all possible association rules that can be extracted from such a

contingency table (Figure 6.5).

BA ⇒ , BA ⇒ , BA ⇒ , BA ⇒ , AB ⇒ , AB ⇒ , AB ⇒ , AB ⇒

Figure 6.5 Set of all possible association rules for Table 6.3.

We assume that B is a target variable and A is a conjunction of explanatory

attributes. Let µ be a set of measures that can be applied to a rule or contingency table.

Examples of such measures include support, confidence, chi-square, odds ratio,

correlation, cosine, Jaccard, and interest (Tan et al., 2004). Below we provide a formal

definition of “contrast rule.”

Definition (General Formulation of Contrast Rules):

A contrast rule, cr, is a 4-tuple <br, υ(br), M, ∆> where:

1. br Ω⊂ , is the base rule,

2. υ(br) Ω⊂ is a neighborhood to which the base rule br is compared,

3. M=<mbase, mneighbor> is an ordered pair of measures where mbase, mneighbor ∈ µ, and

mbase measures the rules in br and mneighbor measures the rules in υ(br),

4. ∆(mbase(br), mneighbor(υ(br))) is a comparison function between mbase(r) and

mneighbor(υ(br)).

A contrast rule, cr, is interesting if and only if ∆(mbase(br), mneighbor(υ(br))) ≥ σ,

where σ is a user defined threshold, which implies that there is a large difference

between br and its neighborhood with respect to M.

Figure 6.6 Formal definition of a contrast rule

 161

As shown in Figure 6.6, the contrast rule definition is based on a paired set of rules,

base rule br and its neighborhood υ(br). The base rule is a set of association rules with

which a user is interested in finding contrasting association rules. Below are some

examples that illustrate the definition.

Example 1: cr1 (Difference of confidence)

The first type of contrast rules examines the difference between rules

BA⇒ and BA ⇒ . An example of this type of contrast was shown in Figure 6.1. Let

confidence be the selected measure for both rules. Let absolute difference be the

comparison function. We can summarize this type of contrast as follows:

 br: }{ BA ⇒

 υ(r): }{ BA ⇒

 M: <confidence, confidence>

 ∆: absolute difference

The evaluation criterion for this example is shown in Eq. 6.5. This criterion can be

used for ranking different pairs of contrast rules

where fij corresponds to the values in the i-th row and j-th column of Table 6.3.

Since c(BA ⇒) + c(BA⇒) = 1, therefore,

∆ = | c(r) – c(υ(r)) |

 =| c(BA⇒) – c(BA⇒) |

 (6.5)
,

1

1211

1

12

1

11

+++

−
=−=

f
ff

f
f

f
f

 162

∆ = | c(BA⇒) – c(BA⇒) |

 = | 2c(BA⇒) –1 |

 ∝ c(BA⇒).

Thus, the standard confidence measure is sufficient to detect an interesting contrast of

this type.

Example 2: cr2 (Difference of proportion)

An interesting contrast could be considered between rules AB ⇒ and AB ⇒ . An

example of this contrast was shown in Figure 6.2. Once again, let confidence be the

selected measure for both rules. Let absolute difference be the comparison function. We

can summarize this type of contrast as follows:

 br: }{ AB ⇒

 υ(br): }{ AB⇒

 M: <confidence, confidence>

 ∆: absolute difference

The evaluation criterion for this example is shown in Eq. 6.6, where ∆ is defined as

follows:

where ρ, is the rule proportion (Agresti, 2002) and is defined in Eq. 6.7.

∆ = | c(r) – c (υ(r)) |

 = | c(AB ⇒) – c (AB ⇒) |

(6.6)
)()(

2

12

1

11 BABA
f
f

f
f

⇒−⇒=−=
++

ρρ

 163

)(
)(
)()(ABc

BP
ABPBA ⇒==⇒ρ (6.7)

Example 3: cr3 (Correlation and Chi-Square)

Correlation is a broadly used statistical measure for analyzing the relationship

between two variables. The correlation between A and B in Table 6.3 is measured as

follows:

(6.8)

The correlation measure compares the contrast between the following set of base rules

and their neighborhood rules:

 br is { BA ⇒ , AB ⇒ , BA ⇒ , AB ⇒ }

 υ(br) is { BA ⇒ , AB ⇒ , BA ⇒ , AB ⇒ }

 M: <confidence, confidence>,

 ∆: The difference in the square root of confidence products (see Eq. 6.9).

 (6.9)

where c1, c2, c3, c4, c5, c6, c7, and c8 correspond to)(BAc ⇒ ,)(ABc ⇒ ,)(BAc ⇒ ,

)(ABc ⇒ ,)(BAc ⇒ ,)(ABc ⇒ ,)(BAc ⇒ , and)(ABc ⇒ respectively. Eq. 6.10 is obtained

by expanding Eq. 6.9.

(6.10)

2211

21122211

++++

−
=

ffff
ffffcorr

87654321 cccccccc −=∆

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

BP
BAP

AP
BAP

BP
BAP

AP
BAP

BP
BAP

AP
BAP

BP
ABP

AP
ABP

−=∆

 164

Eq. 6.11 is the correlation between A and B as shown in Eq. 8. Chi-square measure is

related to correlation in the following way:

Ncorr
2χ= (6.12)

Therefore, both measures are essentially comparing the same type of contrast.

Contrast rules and interestingness measures

Different measures have different perspectives on finding interesting rules.

Specifically, each measure defines a base rule and a neighborhood of rules from which

interesting contrast rules can be detected. In our proposed approach a user can choose a

measure and detect the corresponding contrast rules. In addition, the user has flexibility

to choose a base rule/attribute according to what he or she is interested in. Then he or she

selects the neighborhood rules as well as the measures to detect the base rule and its

neighborhood. This is similar to rule template approaches (see 6.2.1). We implemented

examples 1-3 for LON-CAPA data sets, which will be explained in section 6.5.

6.4 Algorithm

In this section we propose an algorithm to find surprising and interesting rules based

on the characteristics of different segments of students/problems. The difficulty with

(6.11)

)()()()(

)()()()(

BPAPBPAP

BAPBAPBAPABP −
=∆

 165

algorithms such as Apriori is that when the minimum-support is high, we miss many

interesting, but infrequent patterns. On the other hand if we choose a minimum-support

that is too low the Apriori algorithm will discover so many rules that finding interesting

ones becomes difficult.

Mining Contrast Rules (MCR) Algorithm:

Input: D – Input set of N transactions
B – Target variable, the basis of interesting contrasts
σ – Minimum (very) low support
m – A measure for ranking the rules
k – Number of the most interesting rules
Divide data set D based on the values of the target variable
foreach j in B
 Select D(j), a subset of transactions including j
 Find the set of closed frequent itemsets, L(j) within D(j)
 foreach)(jL∈l
 Generate rule j⇒l
 Compute measure)(jm ⇒l
 end
 end
Find common rules among the different groups of rules
foreach br and υ(br) pair compute difference in measures, ∆
Sort the rules with respect to ∆
Select top k rules
return R

Figure 6.7 Mining Contrast Rules (MCR) algorithm for discovering interesting
candidate rules

In order to employ the MCR algorithm, several steps must be taken. During the

preprocessing phase, we remove items whose support is too high. For example, if 95% of

students pass the course, this attribute will be removed from the itemsets so that it does

not overwhelm other, more subtle rules. Then we must also select the target variable of

the rules to be compared. This allows the user to focus the search space on subjectively

interesting rules. If the target variable has C distinct values, we divide the data set, D, into

 166

C disjoint subsets based on the elements of the target variable, as shown in Figure 6.7.

For example, in the case where gender is the target variable, we divide the transactions

into male and female subsets to permit examination of rule coverage.

Using Borgelt’s implementation13 of the Apriori algorithm (version 4.21), we can

find closed itemsets employing a simple filtering approach on the prefix tree (Borgelt,

2003). A closed itemset is a set of items for which none of its supersets have exactly the

same support as itself. The advantage of using closed frequent itemsets for our purposes

is that we can focus on a smaller number of rules for analysis, and larger frequent

itemsets, by discarding the redundant supersets.

We choose a very low minimum support to obtain as many frequent itemsets as is

possible. Using perl scripts, we find the common rules between two contrast subsets.

Finally, we rank the common rules with all of the previously explained measures, and

then the top k rules of the sorted ranked-rules are chosen as a candidate set of interesting

rules. Therefore an important parameter for this algorithm is minimum support, σ; the

lower the σ, the larger the number of common rules. If the user selects a specific ranking

measure, m, then the algorithm will rank the rules with respect to that measure.

6.5 Experiments

In this section we first provide a general model for data attributes, data sets and their

selected attributes, and then explain how we handle continuous attributes. Finally, we

discuss our results and experimental issues.

13 The code for this program is available at http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html.

 167

6.5.1 Data model

In order to better understand the interactions between students and the online

educational system, a model is required to analyze the data. Ideally, this model would be

both descriptive and predictive in nature.

As shown in Figure 6.8, each student is characterized by a set of attributes which are

static for any particular analysis (GPA, gender, ethnicity, etc.) and can be easily

quantized. The u-tuple ()1(
iS ,)2(

iS , …,)(u
iS) describes the characteristics of the i-th

student. The set of problems is determined by the scope of the analysis – at this time,

single courses over individual terms, but with future possibilities for multi-term analysis

– and characterized by a set of attributes, some of which are fixed (Bloom’s taxonomic

categorization, content type, simulation-dependent, etc.). The v-tuple ()1(
jP ,)2(

jP , …,

)(v
jP) describes the characteristics of the j-th problem.

 Figure 6.8 Attribute mining model, Fixed students’ attributes, Problem
attributes, and Linking attributes between students and problem

…
…
…

…

…

)1(
1S

…
)(

1
uS

()1(
11SP ,)2(

11SP , …,)(
11

kSP) Problem

)1(
2S

…
)(

2
uS
)1(

mS
…

)(u
mS

()1(
mnSP ,

)2(
mnSP , …,)(k

mnSP)

)1(
1P

…
)(

1
vP

)1(
2P

…
)(

2
vP

)1(
nP

…
)(v

nP

Student

 168

The interaction of these two sets becomes a third space where larger questions can be

asked. The k-tuple ()1(
ijSP ,)2(

ijSP , …,)(k
ijSP) describes the characteristics of the i-th

student linking to the j-th problem. LON-CAPA records and dynamically organizes a

vast amount of information on students' interactions with and understanding of these

materials.

The model is framed around the interactions of the two main sources of interpretable

data: students and assessment tasks (problems). Figure 6.9 shows the actual data model,

which is frequently called an entity relationship diagram (ERD) since it depicts categories

of data in terms of entities and relationships.

BELONGS TO

GENERATES
HAS

EN ROLLS IN

STUDENT
Student_ID
Name
Birth date
Address
Ethnicit y
GPA
Lt_GPA
Department
Gender

ACTIVITY LOG
Stu_ID_Crs_ID_Prb_ID
of Tries
Success
Time
Grade

COURSE
Cousre_ID
Name
Schedule
Credits

ASSESSMENT TASK
Problem_ID
Open date
Due date
Ty pe
Degree of Dif f iculty
Degree of Discrimination

Figure 6.9 Entity Relationship Diagram for a LON-CAPA course

 169

The attributes selected for association analysis are divided into four groups within

the LON-CAPA system:

a) Student attributes: which are fixed for any student. Attributes such as Ethnicity,

Major, and Age were not included in the data out of necessity – the focus of this work is

primarily on the LON-CAPA system itself, so the demographics of students is less

relevant. As a result, the following three attributes are included:

GPA: is a continuous variable that is discretized into eight intervals between zero and

four with a 0.5 distance.

Gender: is a binary attribute with values Female and Male.

LtGPA (Level Transferred (i.e. High School) GPA): measured the same as GPA

b) Problem attributes: which are fixed for any problem. Among several attributes for

the problems we selected the four following attributes:

DoDiff (degree of difficulty): This is a useful factor for an instructor to determine

whether a problem has an appropriate level of difficulty. DoDiff is computed by the total

number of students’ submissions divided by the number of students who solved the

problem correctly. Thus, DoDiff is a continuous variable in the interval [0,1] which is

discretized into terciles of roughly equal frequency: easy, medium, and hard.

DoDisc (degree of discrimination): A second measure of a problem’s usefulness in

assessing performance is its discrimination index. It is derived by comparing how

students whose performance places them in the top quartile of the class score on that

problem compared to those in the bottom quartile. The possible values for DoDisc vary

from –1 to +1. A negative value means that students in the lower quartile scored better

 170

on that problem than those in the upper. A value close to +1 indicates the higher

achieving students (overall) performed better on the problem. We discretize this

continuous value into terciles of roughly equal frequency: negatively-discriminating, non-

discriminating, and positively-discriminating.

AvgTries (average number of tries): This is a continuous variable which is

discretized into terciles of roughly equal frequency: low, medium, and high.

c) Student/Problem interaction attributes: We have extracted the following attributes

per student per problem from the activity log:

Succ: Success on the problem (YES, NO)

Tries: Total number of attempts before final answer.

Time: Total time from first attempt until the final answer is derived.

d) Student/Course interaction attributes: We have extracted the following attributes

per student per course from the LON-CAPA system.

Grade: Student’s Grade, the nine possible labels for grade (a 4.0 scale with 0.5

increments). An aggregation of “grade” attributes is added to the total attribute list.

Pass-Fail: Categorize students with one of two class labels: “Pass” for grades above

2.0, and “Fail” for grades less than or equal to 2.0.

6.5.2 Data sets

For this research we selected three data sets from the LON-CAPA courses as shown

in Table 6.4. For example the second row of the table shows that BS111 (Biological

Science: Cells and Molecules) integrated 235 online homework problems, and 382

students used LON-CAPA for this course. BS111 had an activity log with approximately

239 MB of data. Though BS111 is a larger course than LBS271 (first row of the table), a

 171

physics course, it is much smaller than CEM141 (third row), general chemistry I. This

course had 2048 students enrolled and its activity log exceeds 750MB, corresponding to

more than 190k student/problem interactions when students attempting to solve

homework problems.

Table 6.4 Characteristics of three MSU courses which used LON-CAPA in fall
semester 2003

Data set Course Title # of
Students

of
Problems

Size of
Activity log

of
Interactions

LBS 271 Physics_I 200 174 152.1 MB 32,394
BS 111 BiologicalScience 382 235 239.4 MB 71,675

CEM141 Chemistry_I 2048 114 754.8 MB 190,859

For this chapter we focus on two target variables, gender and pass-fail grades, in

order to find the contrast rules involving these attributes. A constant difficulty in using

any of the association rule mining algorithms is that they can only operate on binary data

sets. Thus, in order to analyze quantitative or categorical attributes, some modifications

are required – binarization – to partition the values of continuous attributes into discrete

intervals and substitute a binary item for each discretized item. In this experiment, we

mainly use equal-frequency binning for discretizing the attributes.

6.5.3 Results

This section presents some examples of the interesting contrast rules obtained from

the LON-CAPA data sets. Since our approach is an unsupervised case, it requires some

practical methods to validate the process. The interestingness of a rule can be subjectively

measured in terms of its actionability (usefulness) or its unexpectedness (Silberschatz &

 172

Tuzhilin, 1995; Piatetsky-Shapiro & Matheus, 1994; Liu et al., 1999; Silberschatz &

Tuzhilin, 1996).

One of the techniques for mining interesting association rules based on

unexpectedness. Therefore, we divide the set of discovered rules into three categories:

1. Expected and previously known: This type of rule confirms user beliefs, and

can be used to validate our approach. Though perhaps already known, many

of these rules are still useful for the user as a form of empirical verification of

expectations. For our specific situation (education) this approach provides

opportunity for rigorous justification of many long-held beliefs.

2. Unexpected: This type of rule contradicts user beliefs. This group of

unanticipated correlations can supply interesting rules, yet their

interestingness and possible actionability still requires further investigation.

3. Unknown: This type of rule does not clearly belong to any category, and

should be categorized by domain-specific experts. For our situations,

classifying these complicated rules would involve consultation with not only

the course instructors and coordinators, but also educational researchers and

psychologists.

The following rule tables present five examples of the extracted contrast rules

obtained using our approach. Each table shows the coded contrast rule and the “support”

and “confidence” of that rule. Abbreviations are used in the rule code, and are

summarized as follows: Succ stands for success per student per problem, LtGPA stands

for transfer GPA, DoDiff stands for degree of difficulty of a particular problem, and

 173

DoDisc stands for degree of discrimination of a problem. In our experiments, we used

three measures to rank the contrast rules:

6.5.3.1 Difference of confidences

The focus of this measure is on comparing the confidences of the contrast rules

(BA ⇒ and BA ⇒). Therefore, top rules found by this measure have a high value of

confidence ratio (c1/c2). Contrast rules in Table 6.5 suggest that students in LBS 271 who

are successful in homework problems are more likely to pass the course, and this comes

with a confidence ratio c1/c2=12.7.

Table 6.5 LBS_271 data set, difference of confidences measure

Contrast Rules Support & Confidence
(Succ=YES) ==> Passed (s=86.1%, c=92.7%)
(Succ=YES) ==> Failed (s=6.8%, c=7.3%)

 This rule implies a strong correlation among the student’s success in homework

problems and his/her final grade. Therefore, this rule belongs to the first category; it is a

known, expected rule that validates our approach.

Table 6.6 CEM_141 data set, difference of confidences measure

Contrast Rules Support & Confidence
(Lt_GPA=[1.5,2)) ==> Passed (s=0.6%, c=7.7%)
(Lt_GPA=[1.5,2)) ==> Failed (s=7.1%, c=92.3%)

Contrast rules in Table 6.6 could belong to the first category as well; students with

low transfer GPAs are more likely to fail CEM 141 (c2/c1=12). This rule has the

advantage of actionability; so, when students with low transfer GPAs enroll for the

course, the system could be designed to provide them with additional help.

 174

6.5.3.2 Difference of Proportions

The focus of this measure is on comparing the rules (AB ⇒ and AB⇒). Contrast

rules in Table 6.7 suggest that historically strong students that take long periods of time

between their first (incorrect) solution attempt and subsequent attempts tend to be female.

Though this rule may belong to the second category, there is some empirical evidence

that female students have better performances over long periods of time than males

(Kashy D.; 2001). We found this interesting contrast rules using the difference of

confidences to discover the top significant rules for BS 111. Though the support of the

rules is low, that is the result would be of an interesting rule with low-support.

Table 6.7 BS_111 data set, difference of proportion measure

Contrast Rules Support & Confidence
Male ==> (Lt_GPA=[3.5,4] & Time>20_hours) (s=0.1%, c=26.3%)
Female ==>(Lt_GPA=[3.5,4] & Time>20_hours) (s=0.6%, c=89.7%)

6.5.3.3 Chi-square

It is a well-known condition in chi-square testing for contingency tables that cell

expected values need to be above 5 to guarantee the veracity of the significance levels

obtained (Agresti, 2002). We do pruning if this limitation is violated in some cases, and

this usually happens when the expected support corresponding to f11 or f12 in Table 6.3 is

low.

Table 6.8 CEM_141 data set, chi-square measure

Contrast Rules Support & Confidence
(Lt_GPA=[3,3.5) & Sex=Male & Tries=1) ==> Passed (s=4.4%, c=82.7%)
(Lt_GPA=[3,3.5) & Sex=Male & Tries=1) ==> Failed (s=0.9%, c=17.3%)

 175

Contrast rules in Tables 6.8 suggest that students with transfer GPAs in the range of

3.0 to 3.5 that were male and answered homework problems on the first try were more

likely to pass the class than to fail it. (c1/c2=4.8). This rule could belong to the second

category. We found this rule using the chi-square measure for CEM 141.

Table 6.9 LBS_271 data set, difference of confidences measure

Contrast Rules Support & Confidence
(DoDiff=medium & DoDisc=non_discriminating

& Succ=YES & Tries=1)
 ==> Passed

(s=28.9%, c=94.1%)

(DoDiff=medium & DoDisc=non_discriminating
& Succ=YES & Tries=1)

==> Failed
(s=1.8%, c=6.9%)

Contrast rules in Table 6.9 show more complicated rules for LBS 271 using

difference of proportion (c1/c2=15.9); these rules belong to the third (unknown) category

and further consultation with educational experts is necessary to determine whether or not

they are interesting.

6.6 Conclusion

LON-CAPA servers are recording students’ activities in large logs. We proposed a

general formulation of interesting contrast rules and developed an algorithm to discover a

set of contrast rules investigating three different statistical measures. This tool can help

instructors to design courses more effectively, detect anomalies, inspire and direct further

research, and help students use resources more efficiently. An advantage of this

developing approach is its broad functionality in many data mining application domains.

Specifically, it allows for contrast rule discovery with very low minimum support,

 176

therefore permitting the mining of possibly interesting rules that otherwise would go

unnoticed.

More measurements tend to permit discovery of higher coverage rules. A

combination of measurements should be employed to find out whether this approach for

finding more interesting rules can be improved. In this vein, we plan to extend our work

to analysis of other possible kinds of contrast rules. This work has been published in

(Minaei-Bidgoli et al., 2004g).

177

Chapter 7 Summary

This dissertation addresses the issues surrounding the use of a data mining

framework within a web-based educational system. We introduce the basic concepts of

data mining as well as information about current online educational systems, a

background on Intelligent Tutoring Systems, and an overview of the LON-CAPA system.

A body of literature has emerged, dealing with the different problems involved in data

mining for performing classification and clustering upon web-based educational data.

This dissertation positions itself to extend data mining research into web-based

educational systems – a new and valuable application. Results of data mining tools help

students use the online educational resources more efficiently while allowing instructors,

problem authors, and course coordinators to design online materials more effectively.

7.1 Summary of the work

This dissertation provides information about the structure of LON-CAPA data, data

retrieval processes, and representation of student statistical information including

problem and solution strategies. We explain how we provide assessment tools in LON-

CAPA on various aspects of teaching and learning. The LON-CAPA system is used for

both formative and summative assessment. Feedback from numerous sources has

improved the educational materials considerably, a continuous and cyclic task which data

mining has the opportunity to impact.

178

7.1.1 Predicting Student Performance

The first aim of this dissertation is to provide a data mining tool for classifying

student characteristics based on features extracted from their logged data. We can use this

tool to predict the group to which any individual student will belong with reasonable

precision. Eventually, this information will help students use course resources better,

based on the usage of that resource by other students in similar groups. Four tree-based

(C5.0, CART, Quest, and Cruise) and five non tree-based classifiers (k-nearest neighbor,

Bayesian, Parzen window and neural network) are used to segregate student data. Using a

combination of multiple classifiers leads to a significant accuracy improvement for

various LON-CAPA courses. Weighting the features and using a genetic algorithm to

minimize the error rate improves the prediction accuracy by at least 10% in all the cases

tested.

The successful implementation of student classification to predict their performance,

demonstrates the merits of using the LON-CAPA data for pattern recognition in order to

predict the students’ final grades based on features extracted from their homework data.

We design, implement, and evaluate a series of pattern classifiers with various parameters

in order to compare their performance in analyzing a real dataset from the LON-CAPA

system.

This approach is easily adaptable to different types of courses, different population

sizes, and allows for different features to be analyzed. This work represents a rigorous

application of known classifiers as a means of analyzing and comparing usage and

performance of students who have taken a technical course that was partially/completely

administered via the web.

179

7.1.2 Clustering ensembles

A second objective of this research is to extend previous theoretical work regarding

clustering ensembles with the goal of creating an optimal framework for categorizing

web-based educational resources. We propose non-adaptive and adaptive resampling

schemes for the integration of multiple clusterings (independent and dependent).

Experimental results show improved stability and accuracy for clustering structures

obtained via bootstrapping, subsampling, and adaptive techniques. This study shows that

meaningful consensus partitions for an entire data set of objects can emerge from

clusterings of bootstrap (with replacement) and subsamples (without replacement) of

small size.

Empirical studies are conducted on several data sets for different consensus

functions, number of partitions in the combination and number of clusters in each

component. The results demonstrate that there is a trade-off between the number of

clusters per component and the number of partitions, and that the sample size of each

partition needed in order to perform the combination process converges to an optimal

error rate. These improvements offer insights into specific associations within the data

sets. The challenging points of using resampling techniques for maintaining the diversity

of partitions are discussed. We show that a critical fraction of data exists such that the

structure of an entire data set can be perfectly detected. Subsamples of small sizes can

reduce computational costs and measurement complexity for many explorative data

mining tasks with distributed sources of data. This empirical study also compares the

performance of adaptive and non-adaptive clustering ensembles using different consensus

functions on a number of data sets. By focusing attention on the data points with the least

180

consistent clustering assignments, one can better approximate the inter-cluster boundaries

and improve clustering accuracy and convergence speed as a function of the number of

partitions in the ensemble. The comparison of adaptive and non-adaptive approaches is a

new avenue for research, and this study helps to pave the way for the useful application

of distributed data mining methods.

7.1.3 Interesting association rules

Finally, this dissertation proposes techniques for discovering interesting associations

between student attributes, problem attributes, and solution strategies. We develop an

algorithm for the discovery of “interesting” association rules within a web-based

educational system. The main focus is on mining interesting contrast rules, which are sets

of conjunctive rules describing interesting characteristics of different segments within a

population. In the context of web-based educational systems, contrast rules help to

identify attributes characterizing patterns of performance disparity between various

groups of students. This dissertation presents a general formulation of contrast rules as

well as a new algorithm for mining interesting contrast rules.

We address the issue of choosing different measures for the discovery of contrast

rules. Different measures have different perspectives on finding interesting rules.

Specifically, each measure defines a base rule and a neighborhood of rules from which

interesting contrast rules can be detected. In our proposed approach a user can choose a

measure and detect the corresponding contrast rules. In addition, the user has flexibility

to choose a base rule/attribute according to what he or she is interested in. Then the user

selects the neighborhood rules as well as the measures to detect the base rule and its

neighborhood.

181

Examining these contrasts can improve the online educational systems for both

teachers and students – allowing for more accurate assessment and more effective

evaluation of the learning process.

7.2 Future work

There are several promising directions to extend the work presented in this thesis:

1. Develop a tool to find the effects of different types of problems on student

achievement. These problems will be classified to find patterns in which students

are successful.

2. Develop techniques that apply student information in helping individuals to use

resources more efficiently (recommendation system). As an example, the

following suggestion might be made by the system: “You are about to start a test.

Other students similar to you, who succeeded in this test, have also accessed

Section 5 of Chapter 3. You did not. Would you like to access it now before

attempting the test?”

3. Find clusters of learners with similar browsing behavior, given students’ browsing

data and course contents. Though the implications of this clustering are not

completely known at this time, it seems a valid question amidst the other solid

and useful applications of this work.

4. Identify those students who are at risk of failure, especially in very large classes.

This will help the instructor provide appropriate advising in a timely manner.

5. Identify sequences of strategies that students use in solving homework problems.

This may help in detecting anomalies in designed problems and assist instructors

in developing more effective homework.

182

Appendix A: Tree Classifiers Output

C5.0

Using C5.0 for classifying the students: This result shows the error rate in each fold

in 10-fold cross-validation, and confusion matrix.

In 2-classes (Passed, Failed)

Fold Rules
---- ----------------
 No Errors

 0 9 18.2%
 1 9 22.7%
 2 12 27.3%
 3 5 30.4%
 4 8 17.4%
 5 7 21.7%
 6 10 13.0%
 7 8 17.4%
 8 4 17.4%
 9 8 21.7%

 Mean 8.0 20.7%
SE 0.7 1.6%

In 3-classes (High, Middle, Low) we got the following results:

Fold Decision Tree
---- ----------------
 Size Errors

 0 7 36.4%
 1 12 45.5%
 2 6 45.5%
 3 7 47.8%
 4 10 34.8%
 5 9 34.8%
 6 6 47.8%
 7 8 43.5%
 8 10 47.8%
 9 9 47.8%

 Mean 8.4 43.2%
 SE 0.6 1.8%

183

In 9-classes we got the following results:

Fold Decision Tree
---- ----------------
 Size Errors

 0 57 81.8%
 1 51 63.6%
 2 55 63.6%
 3 61 78.3%
 4 48 73.9%
 5 56 73.9%
 6 58 69.6%
 7 53 87.0%
 8 56 78.3%
 9 56 73.9%

 Mean 55.1 74.4%
 SE 1.2 2.4%

 (a) (b) (c) (d) (e) (f) (g) (h) (i) <-classified as
 ---- ---- ---- ---- ---- ---- ---- ---- ----
 1 1 (a): class 1
 1 3 2 2 2 (b): class 2
 1 2 7 6 2 7 3 (c): class 3
 4 2 5 2 4 3 3 (d): class 4
 2 5 3 12 11 8 2 (e): class 5
 7 5 9 15 9 7 (f): class 6
 4 6 3 15 5 8 (g): class 7
 1 1 7 3 2 14 (h): class 8
 (i): class 9

Here, there are a sample of rule sets resulted the from C5.0 in 3-class classification

184

Rule 1: (8, lift 2.9)
 FirstCorrect > 64
 FirstCorrect <= 112
 TotalCorrect > 181
 AvgTries > 1270
 TotalTimeSpent <= 87.87
 Discussion <= 0
 -> class High [0.900]

Rule 2: (5, lift 2.8)
 FirstCorrect > 93
 FirstCorrect <= 99
 TotalCorrect > 181
 AvgTries <= 1270
 Discussion <= 14
 -> class High [0.857]

Rule 3: (15/2, lift 2.7)
 FirstCorrect <= 112
 TotalCorrect > 181
 Discussion > 0
 Discussion <= 14
 -> class High [0.824]

Rule 4: (8/1, lift 2.6)
 FirstCorrect <= 112
 TotalCorrect > 174
 TotalCorrect <= 180
 AvgTries <= 1768
 Discussion <= 0
 -> class High [0.800]

Rule 5: (3, lift 2.6)
 FirstCorrect > 112
 FirstCorrect <= 117
 TotalCorrect > 180
 TotalTimeSpent > 14.01
 Discussion <= 1
 -> class High [0.800]
…………

Rule 15: (3/1, lift 2.2)
 FirstCorrect <= 112
 TotalCorrect > 180
 TotalCorrect <= 181
 Discussion <= 0
 -> class Low [0.600]

Here, there are a sample of rule sets resulted the from C5.0 in 2-class classification

185

Rules:

Rule 1: (158/25, lift 1.2)
 TotalCorrect > 165
 -> class Passed [0.838]

Rule 2: (45/8, lift 1.1)
 Discussion > 1
 -> class Passed [0.809]

Rule 3: (7, lift 3.2)
 FirstCorrect <= 78
 TotalCorrect <= 165
 -> class Failed [0.889]

Rule 4: (2, lift 2.7)
 TotalCorrect <= 165
 AvgTries > 669
 Discussion > 1
 Discussion <= 4
 -> class Failed [0.750]

Rule 5: (47/15, lift 2.4)
 TotalCorrect <= 165
 -> class Failed [0.673]

Default class: Passed

Evaluation on hold-out data (22 cases):
 Rules

 No Errors
 5 3(13.6%) <<

And a sample of tree, which is produced by C5.0 in one of the folds in 3 classes:

186

TotalCorrect <= 165:
:...AvgTries > 850: Low (13/2)
: AvgTries <= 850:
: :...Discussion > 2:
: :...TotalTimeSpent <= 20.57: Low (2)
: : TotalTimeSpent > 20.57: Middle (3/1)
: Discussion <= 2:
: :...TotalTimeSpent > 22.63: Low (8)
: TotalTimeSpent <= 22.63:
: :...AvgTries <= 561: Low (7/1)
: AvgTries > 561:
: :...TotalCorrect > 156: Low (2)
: TotalCorrect <= 156:
: :...TotalCorrect <= 136: Low (3/1)
: TotalCorrect > 136: Middle (6)
TotalCorrect > 165:
:...AvgTries <= 535:
 :...TotalCorrect <= 177: Low (5)
 : TotalCorrect > 177: High (5/2)
 AvgTries > 535:
 :...FirstCorrect > 112:
 :...TotalCorrect <= 172: Middle (6)
 : TotalCorrect > 172:
 : :...TotalCorrect > 180: Middle (38/13)
 : TotalCorrect <= 180:
 : :...TimeTillCorr <= 23.47:
 : :...TotalCorrect > 178: High (2)
 : : TotalCorrect <= 178:
 : : :...TotalCorrect <= 174: High (4/2)
 : : TotalCorrect > 174: Middle (8/1)
 : TimeTillCorr > 23.47:
 : :...FirstCorrect > 129: Middle (2)
 : FirstCorrect <= 129:
 : :...TotalCorrect > 175: Low (7/1)
 : TotalCorrect <= 175:
 : :...FirstCorrect <= 118: Low (2)
 : FirstCorrect > 118: High (2)
 FirstCorrect <= 112:
 :...TotalTimeSpent > 87.87: Middle (5/1)
 TotalTimeSpent <= 87.87:
 :...TotalCorrect <= 169: High (5/1)
 TotalCorrect > 169:
 :...TotalCorrect <= 174: Middle (8)
 TotalCorrect > 174:
 :...Discussion > 7: Middle (5/1)
 Discussion <= 7:
 :...TotalCorrect <= 177: High (5/1)
 TotalCorrect > 177:
 :...TotalCorrect <= 181:
 :...AvgTries <= 1023: High (3)
 : AvgTries > 1023: Middle (9/2)
 TotalCorrect > 181:
 :...Discussion > 0: High (15/2)
 Discussion <= 0:
 :...FirstCorrect > 99: Middle (5/1)
 FirstCorrect <= 99:
 :...FirstCorrect > 89: High (7/1)
 FirstCorrect <= 89:
 :...AvgTries <= 1355: Middle (4)
 AvgTries > 1355: [S1]

Evaluation on hold-out data (22 cases):
 Decision Tree

 Size Errors
 32 7(31.8%) <<

187

CART

Some of CART report for 2-Classes using Gini criterion:

 File: PHY183.XLS

Target Variable: CLASS2

Predictor Variables: FIRSTCRR, TOTCORR, TRIES, SLVDTIME,

TOTTIME, DISCUSS

Tree Sequence

Tree
Numbe

r

Termin
al

Nodes

Cross-
Validated

Relative Cost

Resubstitution
Relative Cost

Complexity

1 23 0.873 ± 0.099 0.317 -1.000
2 22 0.984 ± 0.104 0.317 1.00E-005
3 15 1.016 ± 0.104 0.397 0.003
4 9 0.762 ± 0.089 0.476 0.004
5 7 0.778 ± 0.091 0.508 0.004
6 5 0.841 ± 0.093 0.556 0.007

7** 3 0.667 ± 0.090 0.619 0.009
8 2 0.714 ± 0.088 0.683 0.018
9 1 1.000 ± 6.73E-

005
1.000 0.088

 * Minimum Cost

 ** Optimal

Classification tree topology for: CLASS2

188

Error Curve

0.5

1.0

1.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

R
el

at
iv

e
C

os
t

Number of Nodes

Gains for 2

0

20

40

60

80

100

0 20 40 60 80 100

%
 C

la
ss

% Population

0

20

40

60

80

100

Gains Data for 2

No
de

Cases
Class 2

% of
Node

Class 2

%
Class 2

Cum %
Class 2

Cum %
Pop

%
Pop

Cases
in Node

Cum
lift

Lift
Pop

1 35 70.00 55.56 55.56 22.03 22.03 50 2.522 2.522
2 7 70.00 11.11 66.67 26.43 4.41 10 2.522 2.522
3 21 12.57 33.33 100.00 100.00 73.57 167 1.000 0.453

Variable Importance

Variable
TOTCORR 100.00 ||

TRIES 56.32 |||||||||||||||||||||||
FIRSTCRR 4.58 |
TOTTIME 0.91

SLVDTIME 0.83
DISCUSS 0.00

189

Misclassification for Learn Data

Class N
Cases

N Mis-
Classed

Pct
Error

Cost

1 164 18 10.98 0.11
2 63 21 33.33 0.33

Misclassification for Test Data

Class N
Cases

N Mis-
Classed

Pct
Error

Cost

1 164 21 12.80 0.13
2 63 21 33.33 0.33

Some of CART report for 3-Classes using Twoing criterion: (10-fold

Cross-Validation):

Tree Sequence

190

Tree
Numbe

r

Termin
al

Nodes

Cross-
Validated

Relative Cost

Resubstitution
Relative Cost

Complexity

1 42 0.802 ± 0.050 0.230 -1.000
2 38 0.808 ± 0.050 0.236 0.001
3 37 0.808 ± 0.050 0.238 0.001
4 36 0.794 ± 0.050 0.242 0.003
5 35 0.786 ± 0.050 0.247 0.003
6 27 0.778 ± 0.050 0.289 0.004
7 24 0.762 ± 0.050 0.311 0.005
8 23 0.762 ± 0.050 0.319 0.005
9 22 0.761 ± 0.050 0.327 0.005
10 21 0.731 ± 0.049 0.336 0.006
11 18 0.734 ± 0.049 0.366 0.007
12 14 0.727 ± 0.049 0.407 0.007
13 13 0.740 ± 0.049 0.418 0.007
14 11 0.732 ± 0.049 0.444 0.009

15** 10 0.694 ± 0.049 0.457 0.009
16 8 0.720 ± 0.050 0.500 0.014
17 6 0.743 ± 0.050 0.545 0.015
18 5 0.741 ± 0.050 0.574 0.019
19 4 0.728 ± 0.050 0.605 0.021
20 3 0.745 ± 0.050 0.661 0.037
21 2 0.758 ± 0.035 0.751 0.060
22 1 1.000 ± 0.000 1.000 0.166

Classification tree topology for: CLASS3

Error Curve

191

0.60

0.70

0.80

0.90

0 10 20 30 40 50
R

el
at

iv
e

C
os

t

Number of Nodes

Gains for 1

0

20

40

60

80

100

0 20 40 60 80 100

%
 C

la
ss

% Population

0

20

40

60

80

100

Gains Data for 1

No
de

Cases
Class 1

% of
Node

Class 1

%
Class 1

Cum %
Class 1

Cum %
Pop

%
Pop

Cases
in Node

Cum
lift

Lift
Pop

9 4 80.00 5.80 5.80 2.20 2.20 5 2.632 2.632
2 4 80.00 5.80 11.59 4.41 2.20 5 2.632 2.632
6 31 62.00 44.93 56.52 26.43 22.03 50 2.138 2.040
4 8 57.14 11.59 68.12 32.60 6.17 14 2.090 1.880
7 13 27.08 18.84 86.96 53.74 21.15 48 1.618 0.891
5 1 12.50 1.45 88.41 57.27 3.52 8 1.544 0.411
10 2 11.76 2.90 91.30 64.76 7.49 17 1.410 0.387
8 2 11.11 2.90 94.20 72.69 7.93 18 1.296 0.366
1 4 8.00 5.80 100.00 94.71 22.03 50 1.056 0.263
3 0 0.00 0.00 100.00 100.00 5.29 12 1.000 0.000

192

Variable Importance

Variable
TOTCORR 100.00 ||

TRIES 40.11 ||||||||||||||||
FIRSTCRR 24.44 ||||||||||
TOTTIME 23.22 |||||||||

SLVDTIME 21.67 ||||||||
DISCUSS 14.44 |||||

Misclassification for Learn Data

Class N
Cases

N Mis-
Classed

Pct
Error

Cost

1 69 22 31.88 0.32
2 95 34 35.79 0.36
3 63 15 23.81 0.24

Misclassification for Test Data

Class N
Cases

N Mis-
Classed

Pct
Error

Cost

1 69 35 50.72 0.51
2 95 52 54.74 0.55
3 63 21 33.33 0.33

Some of CART report for 9-Classes using Entropy criterion: (10-fold

Cross-Validation)

193

Different tree topologies for: CLASS-9

Entropy Gini Twoing

Descriptive Statistics in CART for 3-Classes

 Variable N Mean SD Min Max
Sum
 --

 Overall
 FIRSTCRR 227.00 106.242 20.462 47.000 150.000
24117.000
 TOTCORR 227.00 171.678 18.155 80.000 184.000
38971.000
 TRIES 227.00 977.987 450.898 265.000 3095.000
222003.000
 SLVDTIME 227.00 36.620 24.837 2.590 130.870
8312.700
 TOTTIME 227.00 37.948 25.434 3.000 130.870
8614.170
 DISCUSS 227.00 1.330 3.034 0.000 23.000
302.000

 CLASS3 = 1
 FIRSTCRR 69.00 103.145 19.598 57.000 149.000
7117.000
 TOTCORR 69.00 179.290 7.900 141.000 184.000
12371.000
 TRIES 69.00 1088.406 439.742 487.000 2227.000
75100.000
 SLVDTIME 69.00 39.060 22.209 2.590 98.840
2695.130
 TOTTIME 69.00 39.764 22.797 3.000 99.200
2743.720
 DISCUSS 69.00 1.493 2.988 0.000 14.000
103.000

 CLASS3 = 2
 FIRSTCRR 95.00 108.505 20.973 54.000 150.000
10308.000
 TOTCORR 95.00 175.453 12.412 118.000 184.000
16668.000
 TRIES 95.00 984.937 443.874 392.000 3095.000
93569.000
 SLVDTIME 95.00 36.866 27.353 4.100 130.870
3502.240
 TOTTIME 95.00 37.916 27.865 4.130 130.870
3602.010
 DISCUSS 95.00 1.537 3.596 0.000 23.000
146.000

 CLASS3 = 3

194

 FIRSTCRR 63.00 106.222 20.482 47.000 147.000
6692.000
 TOTCORR 63.00 157.651 24.763 80.000 184.000
9932.000
 TRIES 63.00 846.571 446.210 265.000 2623.000
53334.000
 SLVDTIME 63.00 33.577 23.605 4.870 107.100
2115.330
 TOTTIME 63.00 36.007 24.561 5.920 114.210
2268.440
 DISCUSS 63.00 0.841 1.953 0.000 9.000
53.000

A Sample of CART tree for 3-Classes using Entropy criterion: (10-fold
Cross-validation)

195

QUEST
 Summary of numerical variable: FirstCorr

 Size Obs Min Max Mean Sd

 226 226 0.470E+02 0.150E+03 0.106E+03 0.204E+02

 Summary of numerical variable: TotCorr

 Size Obs Min Max Mean Sd

 226 226 0.960E+02 0.184E+03 0.172E+03 0.171E+02

 Summary of numerical variable: AvgTries

 Size Obs Min Max Mean Sd

 226 226 0.193E+01 0.169E+02 0.551E+01 0.246E+01

 Summary of numerical variable: TimeCorr

 Size Obs Min Max Mean Sd

 226 226 0.249E+01 0.942E+02 0.280E+02 0.185E+02

 Summary of numerical variable: TimeSpent

 Size Obs Min Max Mean Sd

 226 226 0.260E+01 0.942E+02 0.281E+02 0.185E+02

 Summary of numerical variable: Discuss

 Size Obs Min Max Mean Sd

 226 226 0.000E+00 0.140E+02 0.912E+00 0.201E+01

196

Result for 2-classes
 Summary of response variable: Class2
 class frequency
 Failed 62
 Passed 164

 2 226

 Options for tree construction
 Learning sample
 estimated priors are
 Class prior
 Failed 0.27434
 Passed 0.72566
 Size and CV misclassification cost and SE of subtrees:
 Tree #Tnodes Mean SE(Mean)
 1 26 0.1947 0.2634E-01
 2* 16 0.1903 0.2611E-01
 3 13 0.1947 0.2634E-01
 4 12 0.2035 0.2678E-01
 5 6 0.1947 0.2634E-01
 6** 4 0.1947 0.2634E-01
 7 3 0.2301 0.2800E-01
 8 2 0.2434 0.2854E-01
 9 1 0.2743 0.2968E-01

CART 0-SE tree is marked with *
CART SE-rule using CART SE is marked with **

use 10-fold CV sample pruning
 SE-rule trees based on number of SEs = 1.00

 subtree # Terminal complexity current
 number nodes value cost
 1 26 0.0000 0.0885
 2 16 0.0022 0.1106
 3 13 0.0029 0.1195
 4 12 0.0044 0.1239
 5 6 0.0052 0.1549
 6 4 0.0111 0.1770
 7 3 0.0177 0.1947
 8 2 0.0354 0.2301
 9 1 0.0442 0.2743

Classification tree:

 Node 1: TotCorr <= 156.9
 Node 2: Failed
 Node 1: TotCorr > 156.9
 Node 3: TotCorr <= 168.8
 Node 18: Discuss <= 1.279
 Node 20: Failed
 Node 18: Discuss > 1.279
 Node 21: Passed
 Node 3: TotCorr > 168.8
 Node 19: Passed

 Classification matrix based on learning sample
 predicted class
 actual class Failed Passed
 Failed 35 27
 Passed 13 151

Classification matrix based on 10-fold CV
 predicted class
 actual class Failed Passed

197

 Failed 33 29
 Passed 15 149

Result for 3-classes
 use 10-fold CV sample pruning
 SE-rule trees based on number of SEs = 1.00

 Size and CV misclassification cost and SE of subtrees:
 Tree #Tnodes Mean SE(Mean)
 1 47 0.5354 0.3318E-01
 2 30 0.5265 0.3321E-01
 3 24 0.5354 0.3318E-01
 4 10 0.4735 0.3321E-01
 5* 9 0.4425 0.3304E-01
 6 8 0.4513 0.3310E-01
 7 6 0.4602 0.3315E-01
 8** 4 0.4735 0.3321E-01
 9 2 0.4823 0.3324E-01
 10 1 0.5796 0.3283E-01

 CART 0-SE tree is marked with *
 CART SE-rule using CART SE is marked with **

 Following tree is based on **

 Structure of final tree

 Node Left node Right node Split variable Predicted class
 1 2 3 TotCorr
 2 * terminal node * Low
 3 26 27 1stGotCrr
 26 28 29 TotCorr
 28 * terminal node * Middle
 29 * terminal node * High
 27 * terminal node * Middle

 Number of terminal nodes of final tree = 4
 Total number of nodes of final tree = 7

 Classification tree:

 Node 1: TotCorr <= 165.5
 Node 2: Low
 Node 1: TotCorr > 165.5
 Node 3: 1stGotCrr <= 117.5
 Node 26: TotCorr <= 181.5
 Node 28: Middle
 Node 26: TotCorr > 181.5
 Node 29: High
 Node 3: 1stGotCrr > 117.5
 Node 27: Middle

 Classification matrix based on learning sample
 predicted class
 actual class High Low Middle
 High 34 4 31
 Low 2 34 26
 Middle 21 11 63

 Classification matrix based on 10-fold CV
 predicted class
 actual class High Low Middle
 High 27 10 32
 Low 4 37 21
 Middle 25 15 55
Bagging (Leave-one-out method)

 estimated priors are
 Class prior

198

 High 0.30531
 Low 0.27434
 Middle 0.42035
 minimal node size: 2
 use univariate split
 use (biased) exhaustive search for variable and split selections
 use the divergence famliy
 with lambda value: 0.5000000

 use 226-fold CV sample pruning
 SE-rule trees based on number of SEs = 1.00

 Size and CV misclassification cost and SE of subtrees:
 Tree #Tnodes Mean SE(Mean)
 1 67 0.5354 0.3318E-01
 2 61 0.5354 0.3318E-01
 3 31 0.5177 0.3324E-01
 4 24 0.5000 0.3326E-01
 5* 10 0.4204 0.3283E-01
 6 9 0.4425 0.3304E-01
 7** 8 0.4469 0.3307E-01
 8 6 0.5000 0.3326E-01
 9 4 0.4956 0.3326E-01
 10 2 0.4823 0.3324E-01
 11 1 0.5796 0.3283E-01

 CART 0-SE tree is marked with *
 CART SE-rule using CART SE is marked with **

 Following tree is based on **

 Structure of final tree

 Node Left node Right node Split variable Predicted class
 1 2 3 TotCorr
 2 * terminal node * Low
 3 32 33 1stGotCrr
 32 34 35 TotCorr
 34 36 37 TotCorr
 36 * terminal node * High
 37 * terminal node * Middle
 35 70 71 TimeCorr
 70 * terminal node * High
 71 * terminal node * Middle
 33 104 105 TimeCorr
 104 * terminal node * Middle
 105 132 133 TotCorr
 132 * terminal node * Low
 133 * terminal node * Middle

 Number of terminal nodes of final tree = 8
 Total number of nodes of final tree = 15

Number of terminal nodes of final tree = 10
Total number of nodes of final tree = 19

 Classification tree:

 Node 1: TotCorr <= 165.5
 Node 2: Low
 Node 1: TotCorr > 165.5
 Node 3: 1stGotCrr <= 117.5
 Node 26: TotCorr <= 181.5
 Node 28: TotCorr <= 169.5
 Node 30: High
 Node 28: TotCorr > 169.5
 Node 31: Middle
 Node 26: TotCorr > 181.5
 Node 29: TimeCorr <= 52.44

199

 Node 56: High
 Node 29: TimeCorr > 52.44
 Node 57: Middle
 Node 3: 1stGotCrr > 117.5
 Node 27: TimeCorr <= 24.49
 Node 80: Middle
 Node 27: TimeCorr > 24.49
 Node 81: TotCorr <= 180.5
 Node 104: Low
 Node 81: TotCorr > 180.5
 Node 105: 1stGotCrr <= 130.0
 Node 110: TimeCorr <= 27.16
 Node 112: Low
 Node 110: TimeCorr > 27.16
 Node 113: Middle
 Node 105: 1stGotCrr > 130.0
 Node 111: High

Classification matrix based on learning sample
 predicted class
 actual class High Low Middle
 High 38 5 26
 Low 3 47 12
 Middle 13 13 69

Classification matrix based on 226-fold CV
 predicted class
 actual class High Low Middle
 High 31 9 29
 Low 5 43 14
 Middle 19 19 57

200

Result for 9-classes

 Classification tree:

 Node 1: TotCorr <= 104.0
 Node 2: 0
 Node 1: TotCorr > 104.0
 Node 3: TotCorr <= 165.5
 Node 4: 3
 Node 3: TotCorr > 165.5
 Node 5: TotCorr <= 181.5
 Node 44: TimeCorr <= 2.565
 Node 46: 8
 Node 44: TimeCorr > 2.565
 Node 47: TimeCorr <= 71.06
 Node 48: AvgTries <= 3.145
 Node 50: 4
 Node 48: AvgTries > 3.145
 Node 51: 1stGotCrr <= 77.00
 Node 56: 5
 Node 51: 1stGotCrr > 77.00
 Node 57: AvgTries <= 12.52
 Node 58: TimeCorr <= 40.50
 Node 60: 5
 Node 58: TimeCorr > 40.50
 Node 61: 6
 Node 57: AvgTries > 12.52
 Node 59: 3
 Node 47: TimeCorr > 71.06
 Node 49: 3
 Node 5: TotCorr > 181.5
 Node 45: AvgTries <= 2.630
 Node 108: 4
 Node 45: AvgTries > 2.630
 Node 109: 1stGotCrr <= 111.5
 Node 110: 1stGotCrr <= 55.50
 Node 112: 5
 Node 110: 1stGotCrr > 55.50
 Node 113: TimeCorr <= 57.44
 Node 114: AvgTries <= 5.330
 Node 116: 6
 Node 114: AvgTries > 5.330
 Node 117: 8
 Node 113: TimeCorr > 57.44
 Node 115: 6
 Node 109: 1stGotCrr > 111.5
 Node 111: 6

 predicted class
 actual class 0 2 3 4 5 6 7 8
 0 1 0 0 0 0 0 0 0
 2 1 0 8 0 0 1 0 0
 3 0 0 21 2 2 3 0 0
 4 0 0 7 5 8 2 0 1
 5 0 0 6 0 32 3 0 2
 6 0 0 5 0 19 24 0 4
 7 0 0 2 1 16 15 0 7
 8 0 0 2 0 3 4 0 19
 elapsed time: 386.25 seconds (user: 386.14, system: 0.11)

201

CRUISE

Here, some output results of CRUISE for 3-classes: CV misclassification cost and
SE of subtrees:
 Subtree CV R(t) CV SE # Terminal Nodes
 (largest) 0.549823 0.3313E-01 82
 1 0.539823 0.3315E-01 70
 2 0.544248 0.3313E-01 67
 3 0.539823 0.3315E-01 59
 4 0.526549 0.3321E-01 56
 5 0.544248 0.3313E-01 41
 6 0.553097 0.3307E-01 38
 7 0.553097 0.3307E-01 23
 8 0.561947 0.3300E-01 21
 9 0.557522 0.3304E-01 15
 10 0.535398 0.3318E-01 9
 11 0.504425 0.3326E-01 8
 12* 0.460177 0.3315E-01 6
 13 0.504425 0.3326E-01 2
 14 0.579646 0.3283E-01 1

 * denotes 0-SE Tree
 ** denotes given-SE Tree
 * tree is same as ** tree

 Following tree is based on **

 Splits of the Tree:

 Node Split variable
 1 TotCorr
 2 * terminal *
 3 TotCorr
 8 TotCorr
 24 * terminal *
 25 * terminal *
 9 TotCorr
 27 * terminal *
 28 TimeCorr
 84 * terminal *
 85 * terminal *

 Tree Structure:

202

 Node 1: TotCorr <= 163.156
 Node 2: Terminal Node, predicted class = Low
 Class label : High Low Middle
 Class size : 3 28 11

 Node 1: TotCorr > 163.156
 Node 3: TotCorr <= 171.059
 Node 8: TotCorr <= 168.639
 Node 24: Terminal Node, predicted class = Low
 Class label : High Low Middle
 Class size : 2 7 1

 Node 8: TotCorr > 168.639
 Node 25: Terminal Node, predicted class = Middle
 Class label : High Low Middle
 Class size : 3 4 9

 Node 3: TotCorr > 171.059
 Node 9: TotCorr <= 183.206
 Node 27: Terminal Node, predicted class = Middle
 Class label : High Low Middle
 Class size : 34 18 53

 Node 9: TotCorr > 183.206
 Node 28: ABS(TimeCorr - 35.4849) <= 19.1162
 Node 84: Terminal Node, predicted class = High
 Class label : High Low Middle
 Class size : 22 4 11

 Node 28: ABS(TimeCorr - 35.4849) > 19.1162
 Node 85: Terminal Node, predicted class = Middle
 Class label : High Low Middle
 Class size : 5 1 10

 Detailed Description of the Tree:

 Nodes No. Subnode Split Split Split
 label cases label stat. variable value
 1 226 2 F TotCorr <= 163.16
 3 < infinity
 # obs mean/mode of TotCorr
 Class High : 69 179.290
 Class Low : 62 158.903
 Class Middle : 95 175.453

 2 42 **** terminal, predicted class: Low
 # obs
 Class High : 3
 Class Low : 28
 Class Middle : 11

 3 184 8 F TotCorr <= 171.06
 9 < infinity
 # obs mean/mode of TotCorr
 Class High : 66 180.576
 Class Low : 34 175.176
 Class Middle : 84 179.226

 8 26 24 F TotCorr <= 168.64
 25 < infinity
 # obs mean/mode of TotCorr
 Class High : 5 167.600
 Class Low : 11 167.182
 Class Middle : 10 169.800

 24 10 **** terminal, predicted class: Low
 # obs
 Class High : 2

203

 Class Low : 7
 Class Middle : 1

 25 16 **** terminal, predicted class: Middle
 # obs
 Class High : 3
 Class Low : 4
 Class Middle : 9

 9 158 27 F TotCorr <= 183.21
 28 < infinity
 # obs mean/mode of TotCorr
 Class High : 61 181.639
 Class Low : 23 179.000
 Class Middle : 74 180.500

 27 105 **** terminal, predicted class: Middle
 # obs
 Class High : 34
 Class Low : 18
 Class Middle : 53

 28 53 84 Levene ABS(TimeCorr - 35.5) <=19.116
 85 < infinity
 # obs mean/mode of TimeCorr
 Class High : 27 34.7652
 Class Low : 5 36.5700
 Class Middle : 21 36.1519

 84 37 **** terminal, predicted class: High
 # obs
 Class High : 22
 Class Low : 4
 Class Middle : 11

 85 16 **** terminal, predicted class: Middle
 # obs
 Class High : 5
 Class Low : 1
 Class Middle : 10

 Number of nodes in maximum tree = 153
 Number of nodes in final tree = 11
 Number of terminal nodes in final tree = 6

 Classification Matrix : Predicted class
 High Low Middle
 Actual class #obs Prior ---------------------
 High 69 0.305 22 5 42
 Low 62 0.274 4 35 23
 Middle 95 0.420 11 12 72

 Total obs = 226, # correct = 129
 Resubstitution misclassification cost = 0.4292
 S.E. of resubstitution misclassification cost = 0.3055E-01

 Cross-validation error cost from pruning = 0.4602
 S.E. of CV misclassification cost = 0.3315E-01
 Elapsed system time in seconds: 5.54

204

Bibliography

[1] Aeberhard, S., Coomans D., and de Vel, O. (1992) “Comparison of Classifiers in
High Dimensional Settings”, Tech. Rep. no. 92-02, (1992), Dept. of Computer
Science and Dept. of Mathematics and Statistics, James Cook University of North
Queensland.

[2] Agrawal, R., Imielinski, T.; Swami A. (1993), "Mining Associations between Sets
of Items in Massive Databases", Proc. of the ACM-SIGMOD 1993 Int'l
Conference on Management of Data, Washington D.C., May 1993.

[3] Agrawal, R.; Srikant, R. (1994) "Fast Algorithms for Mining Association Rules",
Proceeding of the 20th International Conference on Very Large Databases,
Santiago, Chile, September 1994.

[4] Agrawal, R. and Srikant. R. (1995) “Mining Sequential Patterns”. In Proceeding
of the 11th International Conference on Data Engineering, Taipei, Taiwan, March
1995.

[5] Agrawal, R., Shafer, J.C. (1996) "Parallel Mining of Association Rules", IEEE
Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, December
1996.

[6] Agresti, A. (2002), Categorical data analysis. 2nd edition, New York: Wiley,
2002.

[7] Albertelli, G., Minaei-Bigdoli, B., Punch, W.F., Kortemeyer, G., and Kashy, E.,
(2002) “Concept Feedback In Computer-Assisted Assignments”, Proceedings of
the (IEEE/ASEE) Frontiers in Education conference, 2002

[8] Albertelli, G. Sakharuk, A., Kortemeyer, G., Kashy, E., (2003) “Individualized
examinations for large on-campus courses”, Proceedings of the (IEEE/ASEE)
Frontiers in Education Conference 2003, vol 33.

[9] Arning, A., Agrawal, R., and Raghavan, P. (1996) “A Linear Method for
Deviation Detection in Large Databases” Proceeding of 2nd international
conference on Knowledge Discovery and Data Mining, KDD 1996.

205

[10] Azevedo, R, Bernard, R, M, “A Meta-analysis of the Effects of Feedback in
Computer-based Instruction”, J. Educational Computing Research 13, 111-127.
(1995).

[11] Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm,
Proceeding ICGA 2, pp. 14-21, Lawrence Erlbuam Associates, Publishers, 1987.

[12] Baker, E. (1978). Cluster Analysis by Optimal Decomposition of Induced Fuzzy
Sets. Delft University Press, Delft, The Netherlands.

[13] Baker, E., and Jain, A. K. (1981). “A Clustering performance measure based on
fuzzy set decomposition.” IEEE Transactions on Pattern Analysis and Machine
Intelligence PAMI 3, 66-75.

[14] Bala J., De Jong K., Huang J., Vafaie H., and Wechsler H. (1997). Using learning
to facilitate the evolution of features for recognizing visual concepts.
Evolutionary Computation 4(3) - Special Issue on Evolution, Learning, and
Instinct: 100 years of the Baldwin Effect. 1997.

[15] Bandyopadhyay, S., and Muthy, C.A. (1995). “Pattern Classification Using
Genetic Algorithms”, Pattern Recognition Letters, Vol. 16, pp. 801-808.

[16] Barchman R. J., and Anand T. (1996), The process of Knowledge Discovery in
Database, 37-57, AAAI/MIT Press.

[17] Barthelemy J.-P. and Leclerc, B. (1995) “The median procedure for partition”, In
Partitioning Data Sets, AMS DIMACS Series in Discrete Mathematics, I.J. Cox et
al eds., 19, pp. 3-34, 1995.

[18] Bay, S. D. and Pazzani, M. J., (2001) “Detecting Group Differences: Mining
Contrast Sets. Data Mining and Knowledge Discovery, 2001, Vol 5, No 3 213-
246.

[19] Ben-Hur, A., Elisseeff, A., and Guyon, I. (2002) "A stability based method for
discovering structure in clustered data," in Pac. Symp. Biocomputing, 2002, vol.
7, pp. 6-17.

[20] Bloom, B. S. (1956). Taxonomy of Educational Objectives. New York, NY,
McKay.

[21] Bloom, B. S. (1984). “The 2-Sigma Problem: The Search for Methods of Group
Instruction as Effective as One-to-one Tutoring.” Educational Researcher 13: 4-
16.

[22] Bonham, S, W, Beichner, R, J, and Deardorff, D. L, (2001). “Online Homework:
Does It Make a Difference?” The Physics Teacher.

206

[23] Borgelt, C. (2003), “Efficient Implementations of Apriori and Eclat”, Workshop
of Frequent Item Set Mining Implementations (FIMI) 2003.

[24] Bransford, J. D., A. L. Brown, et al. (2000). How People Learn. Washington,
D.C., National Academy Press.

[25] Breiman, L. (1998) “Arcing classifiers”, The Annals of Statistics, 26(3), 801-
849,1998.

[26] Breiman, L., (1996) “Bagging Predictors”, Journal of Machine Learning, Vol 24,
no. 2, 1996, pp 123-140.

[27] Breiman, L., Freidman, J.H., Olshen, R. A., and Stone, P. J. (1984). Classification
and Regression Trees. Belmont, CA: Wadsworth International Group.

[28] Bruggemann-Klein, A. and Wood, D. (1988). Drawing Trees Nicely with TEX.

[29] Chan, K.C.C. Ching, J.Y. and Wong, A.K.C. (1992). “A Probabilistic Inductive
Learning Approach to the Acquisition of Knowledge in Medical Expert Systems”.
Proceeding of 5th IEEE Computer Based Medical Systems Symposium. Durham
NC.

[30] CAPA, See http://capa.msu.edu/

[31] Cestnik, B. Konenenko, I. Bratko, I. (1987). ASSISTANT 86: A Knowledge
Elicitation Tool for Sophisticated Users, in Bratko, I. and Navrac, N. (eds),
Progress in Machine Learning, Sigma Press, UK.

[32] CLEAR Software, Inc. (1996). allCLEAR User’s Guide, CLEAR Software, Inc,
199 Wells Avenue, Newton, MA.

[33] Chernoff, H. (1973), “The use of Faces to represent Points in k-Dimensional
Space Graphically”, Journal of American Statistical Association, Vol. 68, page
361-368, June 1973.

[34] Ching, J.Y. Wong, A.K.C. and Chan, C.C. (1995). “Class Dependent
Discretisation for Inductive Learning from Continuous and Mixed-mode Data”.
IEEE Transaction. PAMI, 17(7) 641 - 645.

[35] Comon, P. (1994) "Indepenent Component Analysis – a New Concept?" Signal
Processing, Vol. 36, No. 3, page 287-314.

[36] CourseInfo TM, Blackboard Inc., Washington, D.C. (CourseInfo is a trademark of
Blackboard, Inc., see http://product.blackboard.net/courseinfo/;
http://www.blackboard.com).

207

[37] Dan, S.; and Colla. P., (1998) CART--Classification and Regression Trees. San
Diego, CA: Salford Systems, 1998.

[38] De Jong K.A., Spears W.M. and Gordon D.F. (1993). Using genetic algorithms
for concept learning. Machine Learning 13, 161-188, 1993.

[39] Dempster, A.P., Laird, N. M., and Rubin, D. B. (1977) Maximum Likelihood
From Incomplete Data Via the EM Algorithm, Journal of the Royal Statistical
Society B, 39: 1-22, 1977.

[40] Ding, Q., Canton, M., Diaz, D., Zou, Q., Lu, B., Roy, A., Zhou, J., Wei, Q.,
Habib, A., Khan, M.A. (2000), “Data mining survey”, Computer Science Dept.,
North Dakota State University. See
http://midas.cs.ndsu.nodak.edu/~ding/datamining/dm-survey.doc

[41] Dixon, J.K. (1979) “Pattern recognition with partly missing data” IEEE
Transaction on Systems, Man and Cybernetics SMC 9, 617-621

[42] Dhillon, I. S. and Modha, D. S., (2000)“A Data-clustering Algorithm on
Distributed Memory Multiprocessors”, In Proceedings of Large-scale Parallel
KDD Systems Workshop, ACM SIGKDD, in Large-Scale Parallel Data Mining,
Lecture Notes in Artificial Intelligence, 2000, 1759: 245-260.

[43] Dong, G., Li, J., (1998) “Interestingness of Discovered Association Rules in terms
of Neighborhood-Based Unexpectedness”, Proceedings of Pacific Asia
Conference on Knowledge Discovery in Databases (PAKDD), pp. 72-86.
Melbourne, 1998.

[44] Duda, R.O., Hart, P.E. (1973). Pattern Classification and SenseAnalysis . John
Wiley & Sons, Inc., New York NY.

[45] Duda, R.O., Hart, P.E., and Stork, D.G. (2001). Pattern Classification. 2nd
Edition, John Wiley & Sons, Inc., New York NY.

[46] Dudoit S. and Fridlyand J., (2003) “Bagging to improve the accuracy of a
clustering procedure”, Bioinformatics, 19 (9), pp. 1090-1099, 2003

[47] Dumitrescu, D., Lazzerini, B., and Jain, L.C. (2000). Fuzzy Sets and Their
Application to Clustering and Training. CRC Press LLC, New York.

[48] Efron, B. (1979) "Bootstrap methods: Another Look at the Jackknife". Annals of
Statistics, 1979, 7: 1-26.

[49] El-Sheikh, E. M. (2001). An Architecture for the generation of intelligent tutoring
systems from reusable components and knowledge-based systems, (Ph.D.
Dissertation), 2001, MSU.

208

[50] Ester, M., Kriegel, H.-P., Xu. X. (1995) "A Database Interface for Clustering in
Large Spatial Databases", Proceedings of the Knowledge Discovery and Data
Mining Conference, pages 94-99, Montreal, Canada, 1995.

[51] eCollege, See http://convene.com; http://eCollege.com (real education);
http://www.e-education.com (jones knowledge)

[52] Falkenauer E. (1997). Genetic Algorithms and Grouping Problems. John Wiley &
Sons, 1998.

[53] Fayyad, U. M., Pitatesky-Shapiro, G., Smyth, P., and Uthurasamy, R. (1996).
Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press.

[54] Fern, X., and Brodley, C. E., (2003) “Random Projection for High Dimensional
Data Clustering: A Cluster Ensemble Approach”, In Proc. 20th Int. conf. on
Machine Learning, ICML 2003.

[55] Fischer, B. and Buhmann, J.M. (2002) “Data Resampling for Path Based
Clustering”, in: L. Van Gool (Editor), Pattern Recognition - Symposium of the
DAGM 2002, pp. 206 - 214, LNCS 2449, Springer, 2002.

[56] Fischer, B. and Buhmann, J.M. (2003) “Path-Based Clustering for Grouping of
Smooth Curves and Texture Segmentation”, IEEE Trans. on PAMI, 25 (4), pp.
513-518, 2003.

[57] Frawley, W., Piatetsky-Shapiro, G., and Matheus, C. (1992). Knowledge
Discovery in Databases: An Overview. AI Magazine, Fall 1992, pgs 213-228.

[58] Fred, A.L.N. (2001) “Finding Consistent Clusters in Data Partitions”. In Proc. 3d
Int. Workshop on Multiple Classifier Systems. Eds. F. Roli, J. Kittler, LNCS,
2001, 2364: 309-318

[59] Fred, A.L.N. and Jain, A.K. (2002) “Data Clustering Using Evidence
Accumulation”, In Proc. of the 16th International Conference on Pattern
Recognition, ICPR 2002 ,Quebec City: 276 – 280.

[60] Freitas, A.A. (2002) “A survey of Evolutionary Algorithms for Data Mining and
Knowledge Discovery”, In: A. Ghosh and S. Tsutsui. (Eds.) Advances in
Evolutionary Computation, pp. 819-845. Springer-Verlag, 2002.

[61] Freitas, A.A. (1999) “On rule interestingness measures.”, Knowledge-Based
Systems journal 12 (5-6), 309-315. Oct. 1999.

[62] Freitas, A.A. (1999) Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Berlin: Springer-Verlag, 2002.

209

[63] Frossyniotis, D., Likas, A., and Stafylopatis, A., “A clustering method based on
boosting”, Pattern Recognition Letters, Volume 25, Issue 6, 19 April 2004, Pages
641-654

[64] Fridlyand, J. and Dudoit, S. (2001) “Applications of resampling methods to
estimate the number of clusters and to improve the accuracy of a clustering
methods,” Division of Biostattistics, University of California, Berkley, Tech. Rep.
600, 2001.

[65] Fu Y. and Han, J., (1995) “Meta-rule-guided mining of association rules in
relational databases”. Proc. 1995 Int’l Workshop. on Knowledge Discovery and
Deductive and Object-Oriented Databases (KDOOD’95), Dec. 1995, pp. 39-46.

[66] Garofalakis, M., Rastogi, R. and Shim K. (1999). “SPIRIT: Sequential Pattern
Mining with Regular Expression Constraints”. In Proc. of the 25th Very Large
Database Conference, Edinburgh, Scotland, September 1999.

[67] Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning, MA, Addison-Wesley.

[68] Goossens, M., Rahtz, S. and Mittelbach, F. (1997). The LaTeX Graphics
Companion, Addison Wesley.

[69] Guerra-Salcedo C. and Whitley D. (1999). “Feature Selection mechanisms for
ensemble creation: a genetic search perspective”. In: Freitas AA (Ed.) Data
Mining with Evolutionary Algorithms: Research Directions – Papers from the
AAAI Workshop, 13-17. Technical Report WS-99-06. AAAI Press, 1999.

[70] Guha, S., Rastogi, R., and Shim, K. (1998) “CURE: An efficient clustering
algorithm for large databases” In Proceeding of the 1998 ACM SIGMOD
International Conference on Management of Data Engineering, Pages 512-521
Seattle, WA USA.

[71] Hall, M. A., and Smith, L.A. (1997), “Feature subset selection: a correlation
based filter approach”, Proceeding of the 1997 International Conference on
Neural Information Processing and Intelligent Information Systems, Springer,
Page 855-858.

[72] Han, J.; Kamber, M.; and Tung, A. 2001. Spatial Clustering Methods in Data
Mining: A Survey. In Miller, H., and Han, J., eds., Geographic Data Mining and
Knowledge Discovery. Taylor and Francis. 21

[73] Hand, D. J. (1987), Discrimination and Classification, John Wiley & Sons,
Chichester U.K.

210

[74] Hastie, T., Tibshirani, R., Friedman, J.H. (2001) The Elements of Statistical
Learning, Springer-Verlag, 2001

[75] Heckerman, D. (1996), The process of Knowledge Discovery in Database, 273-
305, AAAI/MIT Press.

[76] Harrell, Jr., Frank E. (2001), Regression modeling strategies: with applications to
linear models, logistic regression, and survival analysis, Springer-Verlag, New
York.

[77] Hoppner, F.; Klawnn, F.; Kruse, R.; Runkler, T.; (2000). Fuzzy Cluster Analysis:
“Methods for classification, data analysis and image recognition”, John Wiley &
Sons, Inc., New York NY.

[78] Houtsma M., and Swami A., (1993) "Set-oriented mining of association rules".
Research Report RJ 9567, IBM Almaden Research Centers, San Jose California,
1993

[79] Hume, D. An Enquiry Concerning Human Understanding, Oxford Philosophical
Texts, Tom L. Beauchamp (Editor) Oxford University Press, 1999

[80] Jain, A.K.; and Dubes; R. C. (1988). Algorithms for Clustering Data. Englewood
Cliffs, NJ: Prentice-Hall.

[81] Jain, A.K.; Mao, J.; and Mohiuddin, K.; (1996). "Artificial Neural Networks: A
Tutorial," IEEE Computer, March. 1996.

[82] Jain A.K. and Moreau (1987), “The Bootstrap Approach to Clustering”, in
Pattern Recognition Theory and Applications, P.A. Devijver and J. Kittler (eds.),
Springer-Verlag, 1987, pp. 63-71.

[83] Jain, A.K.; Duin R. P.W.; and Mao, J. (2000). “Statistical Pattern Recognition: A
Review”, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol.
22, No. 1, January 2000.

[84] Jain, A.K.; Murty, M.N.; Flynn, P.J. (1999) “Data clustering: a review”, ACM
Computing Surveys, Vol. 31, N.3, pp 264-323, 1999

[85] Jain, A.K.; Zongker, D.; (1997). "Feature Selection: Evaluation, Application, and
Small Sample Performance" IEEE Transaction on Pattern Analysis and Machine
Intelligence, Vol. 19, No. 2, February 1997.

[86] John, G. H.; Kohavi R.; and Pfleger, K.; (1994). “Irrelevant Features and Subset
Selection Problem”, Proceeding of the Eleventh International Conference of
Machine Learning, page 121-129, Morgan Kaufmann Publishers, San Francisco,
CA.

211

[87] Karhunen J., Oja E., Wang L., Vigario R., and Joutsenalo P. (1997) "A class of
neural networks for independent component analysis", IEEE Transactions on
NeuRAL Networks. Vol. 8, No. 3, pp486—504, 1997.

[88] Kashy, D A, Albertelli, G, Kashy, E, and Thoennessen, M, (2001), “Teaching
with ALN Technology: Benefits and Costs”, Journal of Engineering Education,
Vol. 90, No. 4, October 2001, pp. 499-505

[89] Kashy, E, Gaff, S, J, Pawley, N, H, Stretch, W, L., Wolfe, S, L., Morrissey, D.J.,
Tsai, Y., (1995) "Conceptual Questions in Computer-Assisted Assignments",
American Journal of Physics, Vol, No 63, 1995, pp. 1000-1005.

[90] Kashy, E., Thoennessen, M., Tsai, Y., Davis, N. E., and Wolfe, S. L. (1998),
“Using Networked Tools to Promote Student Success in Large Classes”, Journal
of Engineering Education, ASEE, Vol. 87, No. 4, 1998, pp. 385-390

[91] Kashy, E., Thoennessen, M., Tsai, Y., Davis, N.E., and Wolfe, S.L. (1997),
"Using Networked Tools to Enhance Student Success Rates in Large Classes,"
Frontiers in Education Conference, Teaching and Learning in an Era of Change,
IEEE CH 36099.

[92] Kaufman, L., and Rousseuw P. (1990) Finding Groups in Data- An Introduction
to Cluster Analysis, Wiley Series in Probability and Mathematical Sciences,
1990.

[93] Klosgen, W., and Zytkow, J., (2002) Handbook of Data Mining and Knowledge
Discovery, Oxford University Press, 2002.

[94] Kluger, A, N, DeNisi, A, (1996). “The Effects of Feedback Interventions on
Performance: Historical Review, a Meta-Analysis and a Preliminary Feedback
Intervention Theory”. Psychological Bulletin, 119, 254-284.

[95] Kluger, A, N, DeNisi, (1998). A, “Feedback interventions: Toward the
understanding of a double-edged sword”, Current Directions in Psychological
Science, 7, 67, 1998

[96] Kohavi, Ron (1995) “A Study of Cross-Validation and Bootstrap for Accuracy
Estimation and Model Selection”, Proceeding of International Joint Conference
on Artificial intelligence (IJCIA), 1995.

[97] Kontkanen, P., Myllymaki, P., and Tirri, H. (1996), Predictive data mining with
finite mixtures. In Proceeding 2nd International Conference “Knowledge
Discovery and Data Mining (KDD’96)”, pages 249-271, Portland, Oregon,
August 1996.

[98] Kortemeyer, G., MSU LectureOnline software package, 1997-2000.

212

[99] Kortemeyer, G., and Bauer, W. (1999), "Multimedia Collaborative Content
Creation (mc3) - The MSU LectureOnline System", Journal of Engineering
Education, 88 (4), 421.

[100] Kortemeyer, G., Albertelli, G., Bauer, W., Berryman, F., Bowers, J., Hall, M.,
Kashy, E., Kashy, D., Keefe, H., Minaei-Bidgoli, B., Punch, W.F., Sakharuk, A.,
Speier, C. (2003): “The LearningOnline Network with Computer-Assisted
Personalized Approach (LON-CAPA)”. PGLDB 2003 Proceedings of the I PGL
Database Research Conference, Rio de Janeiro, Brazil, April 2003.

[101] Kotas, P, (2000) “Homework Behavior in an Introductory Physics Course”,
Masters Thesis (Physics), Central Michigan University (2000)

[102] Kuncheva , L.I., and Jain, L.C., (2000), "Designing Classifier Fusion Systems by
Genetic Algorithms”, IEEE Transaction on Evolutionary Computation, Vol. 33
(2000), pp 351-373.

[103] Mason, B, J, Bruning, R, “Providing Feedback in Computer-based instruction:
What the Research Tells Us.” http://dwb.unl.edu/Edit/MB/MasonBruning.html
(2003).

[104] McLachlan, G.J. and Krishnan, T. (1997) The EM Algorithm and Extensions.
Wiley series in probability and statistics.

[105] R. Meo, “Replacing Support in Association Rule Mining”, Rapporto Tecnico
RT70-2003, Dipartimento di Informatica, Università di Torino, April, 2003

[106] Murty, M. N. and Krishna, G. (1980). “A computationally efficient technique for
data clustering”. Pattern Recognition. 12, pp 153–158.

[107] Lange, R. (1996), An empirical test of weighted effect approach to generalized
prediction using neural nets. In Proceeding 2nd International Conference
“Knowledge Discovery and Data Mining (KDD’96)”, pages 249-271, Portland,
Oregon, August 1996.

[108] LectureOnline, See http://www.lite.msu.edu/kortemeyer/lecture.html

[109] Levine, E. and Domany E., (2001) “Resampling method for unsupervised
estimation of cluster validity”. Neural Computation, 2001, 13, 2573--2593.

[110] Loh, W.-Y. & Shih, Y.-S. (1997). Split Selection Methods for Classification
Trees, Statistica Sinica 7: 815-840.

[111] Liu, B., Hsu, W., Mun, L.F. and Lee, H., (1999) “Finding Interesting Patterns
Using User Expectations”, IEEE Transactions on Knowledge and Data
Engineering, Vol 11(6), pp. 817-832, 1999.

213

[112] Liu, B., Hsu, W. and Ma, Y, (2001) “Identifying Non-Actionable Association
Rules”, Proc. Of seventh ACM SIGKDD International conference on Knowledge
Discovery and Data Mining(KDD-2001) San Francisco, USA.

[113] Lim, T.-S., Loh, W.-Y. & Shih, Y.-S. (2000). “A Comparison of Prediction
Accuracy, Complexity, and Training Time of Thirty-three Old and New
Classification Algorithms”. Machine Learning, Vol. 40, pp. 203--228, 2000. See
http://www.stat.wisc.edu/~limt/mach1317.pdf)

[114] LON-CAPA, See http://www.lon-capa.org

[115] Lu, S. Y., and Fu, K. S. (1978). “ A sentence-to-sentence clustering procedure for
pattern analysis.” IEEE Transactions on Systems, Man and Cybernetics SMC 8,
381-389.

[116] Lu, H., Setiono, R., and Liu, H. (1995). Neurorule: A connectionist approach to
data mining. Proceeding 21st International Conference: Very Large Databases,
pages 478-489, Zurich, Switzerland, September 1995.

[117] Ma, Y., Liu, B., Kian C., Wong, Yu, P.S., and Lee, S.M., (2000) “Targeting the
Right Students Using Data Mining”. Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD-2000,
Industry Track), Aug, 2000, Boston, USA

[118] Martin-Bautista MJ and Vila MA. (1999) A survey of genetic feature selection in
mining issues. Proceeding Congress on Evolutionary Computation (CEC-99),
1314-1321. Washington D.C., July 1999.

[119] Masand, B. and Piatetsky-Shapiro, G. (1996), A Comparison of approaches for
maximizing business payoff of prediction models. In Proceeding 2nd International
Conference “Knowledge Discovery and Data Mining (KDD’96)”, pages 195-201,
Portland, Oregon, August 1996.

[120] Matheus, C.J.. and Piatetsky-Shapiro, G. (1994), An application of KEFIR to the
analysis of healthcare information. In Proceeding “AAAI’94 Workshop
Knowledge Discovery in Database (KDD’94)”, pages 441-452, Seattle, WA, July
1994.

[121] Michalewicz Z. (1996). Genetic Algorithms + Data Structures = Evolution
Programs. 3rd Ed. Springer-Verlag, 1996.

[122] Michalski, R.S., Bratko, I., Kubat M. (1998), Machine Learning and Data
Mining, Methods and applications, John Wiley & Sons, New York.

214

[123] Michalski, R.S., Stepp, R.E., III (1983), "Automated construction of
classification: conceptual clustering versus numerical taxonomy" IEEE
Transactions on Pattern Analysis and Machine Intelligence PAMI 5, 396-410.

[124] Mitchell, Tom M. (1997), Machine Learning, McGraw-Hill.

[125] Minaei-Bidgoli, B., Tan, P-N., Punch, W.F., (2004g) “Mining Interesting Contrast Rules
for a Web-based Educational System”, International Conference on Machine Learning
Applications (ICMLA 2004), Louisville, KY, USA, Dec 2004.

[126] Minaei-Bidgoli, B., Kortemeyer G., Punch, W.F., (2004f) “Association Analysis for an
Online Education System”, IEEE International Conference on Information Reuse and
Integration (IRI-2004), Las Vegas, Nevada, USA, Nov 2004.

[127] Hall, M., Parker, J., Minaei-Bidgoli, B., Albertelli, G., Kortemeyer, G., and Kashy, E.,
“Gathering and Timely Use of Feedback from Individualized On-line Work”
(IEEE/ASEE) FIE 2004 Frontier In Education, Savannah, Georgia, USA, Oct. 2004.

[128] Minaei-Bidgoli, B., Kortemeyer, G., Punch, W.F., (2004e) “Optimizing Classification
Ensembles via a Genetic Algorithm for a Web-based Educational System”, IAPR
International workshop on Syntactical and Structural Pattern Recognition (SSPR 2004)
and Statistical Pattern Recognition (SPR 2004), Lisbon, Portugal, Aug. 2004.

[129] Minaei-Bidgoli, B., Kortemeyer, G., Punch, W.F., (2004d) “Enhancing Online Learning
Performance: An Application of Data Mining Methods”, The 7th IASTED International
Conference on Computers and Advanced Technology in Education (CATE 2004) Kauai,
Hawaii, USA, August 2004.

[130] Minaei-Bidgoli, B., Kortemeyer, G., Punch, W.F., (2004c) “Mining Feature Importance:
Applying Evolutionary Algorithms within a Web-Based Educational System”,
International Conference on Cybernetics and Information Technologies, Systems and
Applications: CITSA 2004, Orlando, Florida, USA, July 2004.

[131] Minaei-Bidgoli, B., Punch, W.F., (2003) “Using Genetic Algorithms for Data
Mining Optimization in an Educational Web-based System”, GECCO 2003
Genetic and Evolutionary Computation Conference, Springer-Verlag 2252-2263,
July 2003 Chicago, IL.

[132] Minaei-Bidgoli, B., Kashy, D.A., Kortemeyer G., Punch, W.F., (2003)
“Predicting Student Performance: An Application of Data Mining Methods with
an educational Web-based System”, (IEEE/ASEE) FIE 2003 Frontier In
Education, Nov. 2003 Boulder, Colorado.

[133] Minaei-Bidgoli, B., Topchy A., and Punch, W.F., (2004a) “Ensembles of
Partitions via Data Resampling”, to be appear in proceeding of IEEE
International Conference on Information Technology: Coding and Computing,
ITCC 2004, vol. 2, pp. 188-192, April 2004, Las Vegas, Nevada.

215

[134] Minaei-Bidgoli, B., Topchy A., and Punch, W.F., (2004b) “A Comparison of
Resampling Methods for Clustering Ensembles”, in Proc. Intl. Conf. Machine
Learning Methods Technology and Application, MLMTA 04, Las Vegas, 2004.

[135] McLachlan, G. (1992), Discrimination Analysis and Statistical Pattern
Recognition, John Wiley & Sons, New York.

[136] McQueen, J. B. (1967). “Some methods of classification and analysis of
multivariate observations.” Proceedings of Fifth Berkeley Symposium on
Mathematical Statistics and Probability, pp. 281-297.

[137] Mori, Y.; Kudo, M.; Toyama, J.; and Shimbo, M. (1998), “Visualization of the
Structure of Classes Using a Graph”, Proceeding of International Conference on
Pattern Recognition, Vol. 2, Brisbane, August 1998, page 1724-1727.

[138] Montgomery, Douglas C., Peck, Elizabeth A., and Vining, Geoffrey G. (2001)
Introduction to linear regression analysis. John Wiley & Sons, Inc., New York
NY.

[139] Monti, S., Tamayo, P., Mesirov, J., Golub, T., (2003) “Consensus Clustering: A
reamlping-Based Method for Class Discovery and Visualization of Gene
Expression Microarray Data”, Journal on Machine Learning, Volume 52 Issue 1-
2, July 2003.

[140] Moore, Geoffrey, A, “Crossing the Chasm”, HarperCollins, 2002. Users of LON-
CAPA in its very early beta versions would appreciate the statement on p.31, as
these early adopters also forgave “…ghastly documentation…” as well as “…
bizarrely obtuse methods of invoking needed functions …”

[141] Muhlenbein and Schlierkamp-Voosen D., (1993). Predictive Models for the
Breeder Genetic Algorithm: I. Continuous Parameter Optimization, Evolutionary
Computation, Vol. 1, No. 1, pp. 25-49, 1993

[142] Murray, T. (1996). “From Story Boards to Knowledge Bases: The First Paradigm
Shift in Making CAI, Intelligent”, ED-MEDIA 96 Educational Multimedia and
Hypermedia Conference, Charlottesville, VA.

[143] Murray, T. (1996). “Having It All, Maybe: Design Tradeoffs in ITS Authoring
Tools”. ITS '96 Third Intl. Conference on Intelligent Tutoring Systems, Montreal,
Canada, Springer-Verlag.

[144] Murthy, S. K. (1998), "Automatic construction of decision trees from data: A
multidisciplinary survey”, Data Mining and Knowledge Discovery, vol. 4, pp.
345--389, 1998.

[145] MMP, Multi-Media Physics, See http://lecture.lite.msu.edu/~mmp/

216

[146] Ng, R.T., Han, J. (1994) “Efficient and Effective Clustering Methods for Spatial
Data Mining”, In 20th International Conference on Very Large Data Bases, Pages
144-145, September 1994, Santiago, Chile.

[147] Odewahn, S.C., Stockwell, E.B., Pennington, R.L., Humphreys, R.M. and
Zumach W.A. (1992). Automated Star/Galaxy Discrimination with Neural
Networks, Astronomical Journal, 103: 308-331.

[148] PhysNet, See http://physnet2.pa.msu.edu/

[149] Park, B.H. and Kargupta, H. (2003) “Distributed Data Mining”. In The Handbook
of Data Mining. Ed. Nong Ye, Lawrence Erlbaum Associates, 2003

[150] Park Y and Song M. (1998). A genetic algorithm for clustering problems. Genetic
Programming 1998: Proceeding of 3rd Annual Conference, 568-575. Morgan
Kaufmann, 1998.

[151] Pascarella, A, M, (2004) “The Influence of Web-Based Homework on
Quantitative Problem-Solving in a University Physics Class”, NARST Annual
Meeting Proceedings (2004)

[152] Pei, M., Goodman, E.D., and Punch, W.F. (1997) "Pattern Discovery from Data
Using Genetic Algorithms", Proceeding of 1st Pacific-Asia Conference
Knowledge Discovery & Data Mining (PAKDD-97). Feb. 1997.

[153] Pei, M., Punch, W.F., Ding, Y., and Goodman, E.D. (1995) "Genetic Algorithms
For Classification and Feature Extraction", presented at the Classification Society
Conference , June 95.

[154] See http://garage.cse.msu.edu/papers/papers-index.html

[155] Pei, M., Punch, W.F., and Goodman, E.D. (1998) "Feature Extraction Using
Genetic Algorithms", Proceeding of International Symposium on Intelligent Data
Engineering and Learning’98 (IDEAL’98), Hong Kong, Oct. 98.

[156] Piatetsky-Shapiro G. and Matheus. C. J., (1994) “The interestingness of
deviations”. In Proceedings of the AAAI-94 Workshop on Knowledge Discovery
in Databases, pp. 25-36, 1994.

[157] Punch, W.F., Pei, M., Chia-Shun, L., Goodman, E.D., Hovland, P., and Enbody
R. (1993) "Further research on Feature Selection and Classification Using Genetic
Algorithms", In 5th International Conference on Genetic Algorithm , Champaign
IL, pp 557-564, 1993.

[158] Quinlan, J. R. (1986), Induction of decision trees. Machine Learning, 1:81-106.

217

[159] Quinlan, J. R. (1987), Rule induction with statistical data, a comparison with
multiple regression. Journal of Operational Research Society, 38, 347-352.

[160] Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, San Mateo, CA:
Morgan Kaufmann.

[161] Quinlan, J. R. (1994), Comparing connectionist and symbolic learning methods,
MIT Press.

[162] Roth, V., Lange, T., Braun, M., Buhmann, J.M. (2002) “A Resampling Approach
to Cluster Validation”, in:, Proceedings in Computational Statistics: 15th
Symposium COMPSTAT 2002, Physica-Verlag, Heidelberg, 123-128.

[163] Ruck, D.W. , Rogers, S.K., Kabirsky, M., Oxley, M.E., and Suter, B.W. (1990),
“The Multi-Layer Perceptron as an Approximation to a Bayes Optimal
Discriminant Function”; IEEE Transactions on Neural Networks, vol. 1, no. 4.

[164] Russell, S.; and Norvig P. (1995). Artificial Intelligence: A Modern Approach.
Prentice-Hall.

[165] Shih, Y.-S. (1999), “Families of splitting criteria for classification trees”,
Statistics and Computing, Vol. 9, 309-315.

[166] Shute, V. and J. Psotka (1996). Intelligent Tutoring Systems: Past, Present, and
Future. Handbook of Research for Educational Communications and Technology.
D. Jonassen. New York, NY, Macmillan.

[167] Shute, V. J. (1991). “Who is Likely to Acquire Programming Skills?” Journal of
Educational Computing Research 1: 1-24.

[168] Shute, V. J., L. A. Gawlick-Grendell, et al. (1993). An Experiential System for
Learning Probability: Stat Lady. Annual Meeting of the American Educational
Research Association, Atlanta, GA.

[169] Shannon, C.E., (1948) “A mathematical theory of communication”, Bell System
Technical Journal, vol. 27, pp. 379-423 and 623-656, July and October, 1948.

[170] Shute, V. J. and J. W. Regian (1990). Rose garden promises of intelligent tutoring
systems: Blossom or thorn? Proceedings from the Space Operations, Applications
and Research Symposium, Albuquerque, NM.

[171] Shute, V. R. and R. Glaser (1990). “A Large-scale Evaluation of an Intelligent
Discovery World: Smithtown.” Interactive Learning Environments 1: 51-76.

[172] Skalak D. B. (1994). Using a Genetic Algorithm to Learn Prototypes for Case
Retrieval an Classification. Proceeding of the AAAI-93 Case-Based Reasoning

218

Workshop, pp. 64-69. Washigton, D.C., American Association for Artificial
Intelligence, Menlo Park, CA, 1994.

[173] Siedlecki, W., Sklansky J., (1989), “A note on genetic algorithms for large-scale
feature selection”, Pattern Recognition Letters, Vol. 10, Page 335-347, 1989.

[174] Silberschatz A. and Tuzhilin, A., (1995) “On subjective measures of
interestingness in knowledge discovery”. Proceeding of KDD, 275-281, 1995.

[175] Silberschatz A. and Tuzhilin, A. (1996) “What makes patterns interesting in
Knowledge discovery systems”. IEEE Transactions on Knowledge and Data
Engineering, 8(6):970-974, December, 1996.

[176] Singley, K. and J. R. Anderson (1989). The Transfer of Cognitive Skill.
Cambridge, MA, Harvard University Press.

[177] Sleeman, D. (1987). PIXIE: A Shell for Developing Intelligent Tutoring Systems.
Artificial Intelligence and Education, R. W. Lawler and M. Yazdani. Norwood,
NJ, Alex Publishers: 239-265.

[178] Sleeman, D. H. and J. S. Brown (1982). Intelligent Tutoring Systems, London,
UK, Academic Press.

[179] Srikant, R. and Agrawal R. (1996). "Mining Quantitative Association Rules in
Large Relational Tables", In Proc. of the ACM-SIGMOD 1996 Conference on
Management of Data, Montreal, Canada, June 1996

[180] Strehl, A. and Ghosh, J. (2002) “Cluster ensembles - a knowledge reuse
framework for combining multiple partitions”. Journal on Machine Learning
Research, 2002, 3: 583-617

[181] Tan, P.N., Kumar V., and Srivastava, J. (2004), “Selecting the Right Objective
Measure for Association Analysis”, Information Systems, 29(4), 293-313, 2004.

[182] Tobias, S., Raphael, J., (1997) “The Hidden Curriculum”, contribution by E.
Kashy and D. J. Morrissey, pp 165-167, Plenum Press, New York 1997.

[183] Topchy, A., Minaei-Bidgoli, B., Jain, A.K., Punch, W.F., (2004) “Adaptive Clustering
Ensembles”, International Conference on Pattern Recognition (ICPR 2004), Cambridge,
UK, Aug. 2004.

[184] Topchy, A., Jain, A.K., and Punch W.F. (2003a), “Combining Multiple Weak
Clusterings”, In proceeding of IEEE Intl. Conf. on Data Mining 2003.

[185] Topchy, A., Jain, A.K., and Punch W.F. (2003b), “A Mixture Model of Clustering
Ensembles”, submitted to SIAM Intl. Conf. on Data Mining 2003

219

[186] TopClass TM, WBT Sytems, San Fransisco, CA. (TopClass is a trademark of WBT
Systems, see http://www.wbtsystems.com).

[187] Toussaint, G. T. (1980). “The relative neighborhood graph of a finite planar set.”
Pattern Recognition 12, 261-268.

[188] Trunk, G.V. (1979), “A problem of Dimensionality: A Simple Example”, IEEE
Transaction on Pattern Analysis and Machine Intelligence, Vol. PAMI-1, No. 3,
July 1979.

[189] Urban-Lurain, M. (1996). Intelligent Tutoring Systems: An Historic Review in the
Context of the Development of Artificial Intelligence and Educational Psychology,
Michigan State University.

[190] Urquhart, R. (1982). “Graph theoretical clustering based on limited neighborhood
sets.” Pattern Recognition 15, 173-187.

[191] Vafaie H and De Jong K. (1993). Robust feature Selection algorithms. Proceeding
1993 IEEE Int. Conf on Tools with AI, 356-363. Boston, Mass., USA. Nov. 1993.

[192] VU, (Virtual University), See http://vu.msu.edu/; http://www.vu.org.

[193] Wu, Q., Suetens, and Oosterlinck, A. (1991) Integration of heuristic and Bayesian
approaches in a pattern-classification system. In Piatetsky-Shapiro G., and
Frawely W.J., editors, “Knowledge Discover yin Database”, pages 249-260,
AAAI/MIT press.

[194] WebCT TM, University of British Columbia, Vancouver, BC, Canada. (WebCT is
a trademark of the University of British Columbia , see http://www.webct.com/)

[195] Weiss, S. M. and Kulikowski C. A. (1991), Computer Systems that Learn:
Classification and Prediction Methods from Statistics, Neural Nets, Machine
Learning, and Expert Systems, Morgan Kaufman.

[196] Woods, K.; Kegelmeyer Jr., W.F.; Bowyer, K. (1997) “Combination of Multiple
Classifiers Using Local Area Estimates”; IEEE Transactions on Pattern Analysis
and Machine Intelligence, Vol. 19, No. 4, 1997.

[197] Yazdani, M. (1987). Intelligent Tutoring Systems: An Overview. Artificial
Intelligence and Education: Learning Environments and Tutoring Systems. R. W.
Lawler and M. Yazdani. Norwood, NJ, Ablex Publishing. 1: 183-201

[198] Zaïane, Osmar R. (2001) “Web Usage Mining for a Better Web-Based Learning
Environment”, in Proc. of Conference on Advanced Technology for Education, pp
60-64, Banff, Alberta, June 27-28, 2001.

220

[199] Zhang, B., Hsu, M., Forman, G. (2000) "Accurate Recasting of Parameter
Estimation Algorithms using Sufficient Statistics for Efficient Parallel Speed-up
Demonstrated for Center-Based Data Clustering Algorithms", Proc. 4th European
Conference on Principles and Practice of Knowledge Discovery in Databases, in
Principles of Data Mining and Knowledge Discovery, D. A. Zighed, J.
Komorowski and J. Zytkow (Eds.), 2000.

[200] Zhang Fern, X., and Brodley, C. E. (2003) “Random Projection for High
Dimensional Data Clustering: A Cluster Ensemble Approach”, in Proc. of the 20th
Int. conf. on Machine Learning ICML 2003.

[201] Zhang, T; Ramakrishnan, R., and Livny, M. (1996), “BIRCH: An Efficient Data
Clustering Method for Very Large Databases”, Proceeding of the ACM SIGMOD
Record, 1996, 25 (2): 103-114

