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ABSTRACT 

DATA MINING FOR A WEB-BASED EDUCATIONAL SYSTEM 

By 

Behrouz Minaei-Bidgoli 

 

Web-based educational technologies allow educators to study how students learn 

(descriptive studies) and which learning strategies are most effective (causal/predictive 

studies). Since web-based educational systems are capable of collecting vast amounts of 

student profile data, data mining and knowledge discovery techniques can be applied to 

find interesting relationships between attributes of students, assessments, and the solution 

strategies adopted by students.  The focus of this dissertation is three-fold: 1) to introduce 

an approach for predicting student performance; 2) to use clustering ensembles to build 

an optimal framework for clustering web-based assessment resources; and 3) to propose a 

framework for the discovery of interesting association rules within a web-based 

educational system.  Taken together and used within the online educational setting, the 

value of these tasks lies in improving student performance and the effective design of the 

online courses. 

First, this research presents an approach to classifying student characteristics in order 

to predict performance on assessments based on features extracted from logged data in a 

web-based educational system. We show that a significant improvement in classification 

performance is achieved by using a combination of multiple classifiers. Furthermore, by 

“learning” an appropriate weighting of the features via a genetic algorithm (GA), we have 



 

iii

successfully improved the accuracy of the combined classifier performance by another 

10-12%. Such classification is the first step towards a “recommendation system” that will 

provide valuable, individualized feedback to students.  

Second, this project extends previous theoretical work regarding clustering 

ensembles with the goal of creating an optimal framework for categorizing web-based 

educational resources.  We propose both non-adaptive and adaptive resampling schemes 

for the integration of multiple clusterings (independent and dependent). Experimental 

results show improved stability and accuracy for clustering structures obtained via 

bootstrapping, subsampling, and adaptive techniques.  These improvements offer insights 

into specific associations within the data sets. 

Finally, this study turns toward developing a technique for discovering interesting 

associations between student attributes, problem attributes, and solution strategies. We 

propose an algorithm for the discovery of “interesting” association rules within a web-

based educational system. The main focus is on mining interesting contrast rules, which 

are sets of conjunctive rules describing interesting characteristics of different segments 

within a population. In the context of web-based educational systems, contrast rules help 

to identify attributes characterizing patterns of performance disparity between various 

groups of students. We propose a general formulation of contrast rules as well as a 

framework for finding such patterns. Examining these contrasts can improve the online 

educational systems for both teachers and students – allowing for more accurate 

assessment and more effective evaluation of the learning process. 
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Chapter 1 Introduction 

The ever-increasing progress of network-distributed computing and particularly the 

rapid expansion of the web have had a broad impact on society in a relatively short period 

of time. Education is on the brink of a new era based on these changes. Online delivery of 

educational instruction provides the opportunity to bring colleges and universities new 

energy, students, and revenues. Many leading educational institutions are working to 

establish an online teaching and learning presence. Several different approaches have 

been developed to deliver online education in an academic setting. In particular, 

Michigan State University (MSU) has pioneered some of these systems which provide an 

infrastructure for online instruction (Multi-Media Physics; CAPA; LectureOnline; 

PhysNet; Kortemeyer and Bauer, 1999; Kashy et al., 1997, LON-CAPA). This study 

focuses on the data mining aspects of the latest online educational system developed at 

MSU, the Learning Online Network with Computer-Assisted Personalized Approach 

(LON-CAPA). 

1.1 Statement of the problem 

In LON-CAPA, we are involved with two kinds of large data sets: 1) educational 

resources such as web pages, demonstrations, simulations, and individualized problems 

designed for use on homework assignments, quizzes, and examinations; and 2) 
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information about users who create, modify, assess, or use these resources. In other 

words, we have two ever-growing pools of data. As the resource pool grows, the 

information from students who have multiple transactions with these resources also 

increases. The LON-CAPA system logs any access to these resources as well as the 

sequence and frequency of access in relation to the successful completion of any 

assignment.  

The web browser represents a remarkable enabling tool to get information to and 

from students. That information can be textual and illustrated, not unlike that presented in 

a textbook, but also include various simulations representing a modeling of phenomena, 

essentially experiments on the computer. Its greatest use however is in transmitting 

information as to the correct or incorrect solutions of various assigned exercises and 

problems. It also transmits guidance or hints related to the material, sometimes also to the 

particular submission by a student, and provides the means of communication with fellow 

students and teaching staff. 

This study investigates data mining methods for extracting useful and interesting 

knowledge from the large database of students who are using LON-CAPA educational 

resources. This study aims to answer the following research questions: 

• How can students be classified based on features extracted from logged data? Do 

groups of students exist who use these online resources in a similar way? Can we 

predict for any individual student which group they belong to? Can we use this 

information to help a student use the resources better, based on the usage of the 

resource by other students in their groups? 
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• How can the online problems that students engage in be classified? How do different 

types of problems impact students’ achievements?  Can the classifications of 

problems be employed to find patterns of questions that help student success? 

• How can data mining help instructors, problem authors, and course coordinators 

better design online materials?  Can we find sequences of online problems that 

students use to solve homework problems? Can we help instructors to develop their 

homework more effectively and efficiently? How can data mining help to detect 

anomalies in homework problems designed by instructors? 

• How can data mining help find patterns of student behavior that groups of students 

take to solve their problems?  Can we find some associative rules between students' 

educational activities? Can we help instructors predict the approaches that students 

will take for some types of problems?  

• How can data mining be used to identify those students who are at risk, especially in 

very large classes? Can data mining help the instructor provide appropriate advising 

in a timely manner? 

The goal of this research is to find similar patterns of use in the data gathered from 

LON-CAPA, and eventually be able to make predictions as to the most beneficial course 

of studies for each student based on a minimum number of variables for each student. 

Based on the current state of the student in their learning sequence, the system could then 

make suggestions as to how to proceed. Furthermore, through clustering of homework 

problems as well as the sequences that students take to solve those problems, we hope to 

help instructors design their curricula more effectively. As more and more students enter 
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the online learning environment, databases concerning student access and study patterns 

will grow.  We are going to develop such techniques in order to provide information that 

can be usefully applied by instructors to increase student learning.  

This dissertation is organized as follows: The rest of this first chapter provides basic 

concepts of data mining and then presents a brief system overview of LON-CAPA that 

shows how the homework and student data are growing exponentially, while the current 

statistical measures for analyzing these data are insufficient. Chapter 2 introduces the 

research background: the important algorithms for data classification and some common 

clustering methods. Chapter 3 provides information about structure of LON-CAPA data, 

data retrieval process, representing the statistical information about students, problem and 

solution strategies, and providing assessment tools in LON-CAPA to detect, to 

understand, and to address student difficulties. Chapter 4 explains the LON-CAPA 

experiment to classify students and predict their final grades based on features of their 

logged data. We design, implement, and evaluate a series of pattern classifiers with 

various parameters in order to compare their performance in a real dataset from the LON-

CAPA system. Results of individual classifiers, and their combination as well as error 

estimates are presented. Since LON-CAPA data are distributed among several servers 

and distributed data mining requires efficient algorithms form multiple sources and 

features, chapter 5 represents a framework for clustering ensembles in order to provide an 

optimal framework for categorizing distributed web-based educational resources. Chapter 

6 discusses the methods to find interesting association rules within the students’ 

databases. We propose a framework for the discovery of interesting association rules 
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within a web-based educational system.  Taken together and used within the online 

educational setting, the value of these tasks lies in improving student performance and the 

effective design of the online courses. Chapter 7 presents the conclusion of the proposal 

and discusses the importance of future work. 

1.2 Data Mining 

Presently, the amount of data stored in databases is increasing at a tremendous speed. 

This gives rise to a need for new techniques and tools to aid humans in automatically and 

intelligently analyzing huge data sets to gather useful information. This growing need 

gives birth to a new research field called Knowledge Discovery in Databases (KDD) or 

Data Mining, which has attracted attention from researchers in many different fields 

including database design, statistics, pattern recognition, machine learning, and data 

visualization. In this chapter we give a definition of KDD and Data Mining, describing its 

tasks, methods, and applications. Our motivation in this study is gaining the best 

technique for extracting useful information from large amounts of data in an online 

educational system, in general, and from the LON-CAPA system, in particular. The goals 

for this study are: to obtain an optimal predictive model for students within such systems, 

help students use the learning resources better, based on the usage of the resource by 

other students in their groups, help instructors design their curricula more effectively, and 

provide the information that can be usefully applied by instructors to increase student 

learning.   
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1.2.1 What is Data Mining? 

Data Mining is the process of analyzing data from different perspectives and 

summarizing the results as useful information. It has been defined as "the nontrivial 

process of identifying valid, novel, potentially useful, and ultimately understandable 

patterns in data" (Frawley et al., 1992; Fayyad et al., 1996).  

 

Figure  1.1   Steps of the KDD Process (Fayyad et al., 1996) 

The process of data mining uses machine learning, statistics, and visualization 

techniques to discover and present knowledge in a form that is easily comprehensible. 

The word “Knowledge” in KDD refers to the discovery of patterns which are extracted 

from the processed data. A pattern is an expression describing facts in a subset of the 

data. Thus, the difference between KDD and data mining is that  
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“KDD refers to the overall process of discoverying knowledge from 

data while data mining refers to application of algorithms for extracting 

patterns from data without the additional steps of the KDD process.” 

(Fayyad et al., 1996) 

However, since Data Mining is a crucial and important part of the KDD process, 

most researchers use both terms interchangeably. Figure 1.1 presents the iterative nature 

of the KDD process. Here we outline some of its basic steps as are mentioned in 

Brachman & Anad (1996): 

• Providing an understanding of the application domain, the goals of the system 

and its users, and the relevant prior background and prior knowledge (This step 

in not specified in this figure.) 

• Selecting a data set, or focusing on a subset of variables or data samples, on 

which discovery is to be performed 

• Preprocessing and data cleansing, removing the noise, collecting the necessary 

information for modeling, selecting methods for handling missing data fields, 

accounting for time sequence information and changes 

• Data reduction and projection, finding appropriate features to represent data, 

using dimensionality reduction or transformation methods to reduce the number 

of variables to find invariant representations for data 

• Choosing the data mining task depending on the goal of KDD: clustering, 

classification, regression, and so forth 
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• Selecting methods and algorithms to be used for searching for the patterns in the 

data 

• Mining the knowledge: searching for patterns of interest 

• Evaluating or interpreting the mined patterns, with a possible return to any 

previous steps 

• Using this knowledge for promoting the performance of the system and 

resolving any potential conflicts with previously held beliefs or extracted 

knowledge 

These are the steps that all KDD and data mining tasks progress through.   

1.2.2  Data Mining Methods 

The objective of data mining is both prediction and description. That is, to predict 

unknown or future values of the attributes of interest using other attributes in the 

databases, while describing the data in a manner understandable and interpretable to 

humans. Predicting the sale amounts of a new product based on advertising expenditure, 

or predicting wind velocities as a function of temperature, humidity, air pressure, etc., are 

examples of tasks with a predictive goal in data mining. Describing the different terrain 

groupings that emerge in a sampling of satellite imagery is an example of a descriptive 

goal for a data mining task.  The relative importance of description and prediction can 

vary between different applications. These two goals can be fulfilled by any of a number 

data mining tasks including: classification, regression, clustering, summarization, 

dependency modeling, and deviation detection. (Harrell and Frank, 2001; Montgomery et 

al., 2001) 
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1.2.3  Predictive tasks 

The following are general tasks that serve predictive data mining goals: 

• Classification – to segregate items into several predefined classes. Given a 

collection of training samples, this type of task can be designed to find a 

model for class attributes as a function of the values of other attributes (Duda 

et al., 2001). 

• Regression – to predict a value of a given continuously valued variable based 

on the values of other variables, assuming either a linear or nonlinear model of 

dependency. These tasks are studied in statistics and neural network fields 

(Montgomery et al., 2001). 

• Deviation Detection – to discover the most significant changes in data from 

previously measured or normative values (Arning et al., 1996; Fayyad et al., 

1996). Explicit information outside the data, like integrity constraints or 

predefined patterns, is used for deviation detection. Arning et al., (1996) 

approached the problem from the inside of the data, using the implicit 

redundancy.  

1.2.4  Descriptive tasks 

• Clustering – to identify a set of categories, or clusters, that describe the data 

(Jain & Dubes, 1988). 

• Summarization – to find a concise description for a subset of data. Tabulating 

the mean and standard deviations for all fields is a simple example of 
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summarization. There are more sophisticated techniques for summarization 

and they are usually applied to facilitate automated report generation and 

interactive data analysis (Fayyad et al., 1996). 

• Dependency modeling – to find a model that describes significant 

dependencies between variables. For example, probabilistic dependency 

networks use conditional independence to specify the structural level of the 

model and probabilities or correlation to specify the strengths (quantitative 

level) of dependencies (Heckerman, 1996). 

1.2.5  Mixed tasks 

There are some tasks in data mining that have both descriptive and predictive 

aspects. Using these tasks, we can move from basic descriptive tasks toward higher-order 

predictive tasks. Here, we indicate two of them: 

• Association Rule Discovery – Given a set of records each of which contain 

some number of items from a given collection, produce dependency rules 

which will predict the occurrence of an item based on patterns found in the 

data. 

• Sequential Pattern Discovery – Given a set of objects, where each object is 

associated with its own timeline of events, find rules that predict strong 

sequential dependencies among different events. Rules are formed by first 

discovering patterns followed by event occurrences which are governed by 

timing constraints found within those patterns. 
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So far we briefly described the main concepts of data mining. Chapter two focuses 

on methods and algorithms of data mining in the context of descriptive and predictive 

tasks.  The research background of both the association rule and sequential pattern 

mining – newer techniques in data mining, that deserve a separate discussion – will be 

discussed in chapter five.  

Data mining does not take place in a vacuum.  In other words, any application of this 

method of analysis is dependent upon the context in which it takes place. Therefore, it is 

necessary to know the environment in which we are going to use data mining methods. 

The next section provides a brief overview of the LON-CAPA system. 

1.3 Online Education systems 

Several Online Education systems1 such as Blackboard, WebCT, Virtual University 

(VU), and some other similar systems have been developed to focus on course 

management issues. The objectives of these systems are to present courses and 

instructional programs through the web and other technologically enhanced media. These 

new technologies make it possible to offer instruction without the limitations of time and 

place found in traditional university programs. However, these systems tend to use 

existing materials and present them as a static package via the Internet. There is another 

approach, pursued in LON-CAPA, to construct more-or-less new courses using newer 

network technology. In this model of content creation, college faculty, K-12 teachers, and 

students interested in collaboration can access a database of hypermedia software 

                                                 

1 See http://www.edutools.info for an overview of current web-based educational systems. 
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modules that can be linked and combined (Kortemeyer and Bauer, 1999). The LON-

CAPA system is the primary focus of this chapter. 

1.3.1  LON-CAPA, System Overview 

LON-CAPA is a distributed instructional management system, which provides 

students with personalized problem sets, quizzes, and exams. Personalized (or 

individualized) homework means that each student sees a slightly different computer-

generated problem. LON-CAPA provides students and instructors with immediate 

feedback on conceptual understanding and correctness of solutions. It also provides 

faculty the ability to augment their courses with individualized, relevant exercises, and 

develop and share modular online resources. LON-CAPA aims to put this functionality 

on a homogeneously distributed platform for creating, sharing, and delivering course 

content with emphasis on cross-institutional collaboration and intellectual property rights 

management. 

1.3.2  LON-CAPA Topology 

LON-CAPA is physically built as a geographically distributed network of constantly 

connected servers. Figure  1.2 shows an overview of this network. All machines in the 

network are connected with each other through two-way persistent TCP/IP connections. 

The network has two classes of servers: library servers and access servers. A library 

server can act as a home server that stores all personal records of users, and is responsible 

for the initial authentication of users when a session is opened on any server in the 

network. For authors, it also hosts their construction area and the authoritative copy of 
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every resource that has been published by that author. An Access Server is a machine that 

hosts student sessions. Library servers can be used as backups to host sessions when all 

access servers in the network are overloaded. 

Every user in LON-CAPA is a member of one domain. Domains could be defined by 

departmental or institutional boundaries like MSU, FSU, OHIOU, or the name of a 

publishing company. These domains can be used to limit the flow of personal user 

information across the network, set access privileges, and enforce royalty schemes. Thus, 

the student and course data are distributed amongst several repositories. Each user in the 

system has one library server, which is his/her home server. It stores the authoritative 

copy of all of their records. 
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Figure  1.2   A schema of distributed data in LON-CAPA 

LON-CAPA currently runs on Redhat-Linux Intel-compatible hardware. The current 

MSU production setup consists of several access servers and some library servers. All 
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access servers are set up on a round-robin IP scheme as frontline machines, and are 

accessed by the students for “user session.” The current implementation of LON-CAPA 

uses mod_perl inside of the Apache web server software. 

1.3.3  Data Distribution in LON-CAPA 

Educational objects in LON-CAPA range from simple paragraphs of text, movies, 

and applets, to individualized homework problems. Online educational projects at MSU 

have produced extensive libraries of resources across disciplines. By combining these 

resources, LON-CAPA produces a national distributed digital library with mechanisms 

to store and retrieve these objects. Participants in LON-CAPA can publish their own 

objects in the common pool. LON-CAPA will allow groups of organizations 

(departments, universities, schools, commercial businesses) to link their online 

instructional resources in a common marketplace, thus creating an online economy for 

instructional resources (lon-capa.org). Internally, all resources are identified primarily by 

their URL. 

LON-CAPA does enable faculty to combine and sequence these learning objects at 

several levels. For example, an instructor from Community College A in Texas can 

compose a page by combining a text paragraph from University B in Detroit with a 

movie from College C in California and an online homework problem from Publisher D 

in New York. Another instructor from High School E in Canada might take that page 

from Community College A and combine it with other pages into a module, unit or 

section. Those in turn can be combined into whole course packs.  
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1.3.4  Resource Variation in LON-CAPA 

LON-CAPA provides three types of resources for organizing a course. LON-CAPA 

refers to these resources as Content Pages, Problems, and Maps. Maps may be either of 

two types: Sequences or Pages. LON-CAPA resources may be used to build the outline, 

or structure, for the presentation of the course to the students.  

• A Content Page displays course content. It is essentially a conventional html 

page. These resources use the extension “.html”. 

• A Problem resource represents problems for the students to solve, with 

answers stored in the system. These resources are stored in files that must use 

the extension “.problem”. 

• A Page is a type of Map which is used to join other resources together into 

one HTML page. For example, a page of problems will appear as a problem 

set. These resources are stored in files that must use the extension “.page”. 

• A Sequence is a type of Map, which is used to link other resources together. 

Sequences are stored in files that must use the extension “.sequence”. 

Sequences can contain other sequences and pages. 

Authors create these resources and publish them in library servers. Then, instructors 

use these resources in online courses. The LON-CAPA system logs any access to these 

resources as well as the sequence and frequency of access in relation to the successful 

completion of any assignment. All these accesses are logged. 
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1.3.5  LON-CAPA Strategy for Data Storage 

Internally, the student data is stored in a directory: 

/home/httpd/lonUsers/domain/1st.char/2nd.char/3rd.char/username/ 

For example /home/httpd/lonUsers/msu/m/i/n/minaeibi/ 

Figure 1.3 shows a list of a student’s data. Files ending with .db are GDBM files 

(Berkeley database), while those with a course-ID as name, for example 

msu_12679c3ed543a25msul1.db, store performance data for that student in the course. 

ls -alF /home/httpd/lonUsers/msu/m/i/n/minaeibi 
 
-rw-r--r--   1 www      users       13006 May 15 12:21 activity.log 
-rw-r-----   1 www      users       12413 Oct 26  2000 coursedescriptions.db 
-rw-r--r--   1 www      users       11361 Oct 26  2000 coursedescriptions.hist 
-rw-r-----   1 www      users       13576 Apr 19 17:45 critical.db 
-rw-r--r--   1 www      users        1302 Apr 19 17:45 critical.hist 
-rw-r-----   1 www      users       13512 Apr 19 17:45 email_status.db 
-rw-r--r--   1 www      users        1496 Apr 19 17:45 email_status.hist 
-rw-r--r--   1 www      users       12373 Apr 19 17:45 environment.db 
-rw-r--r--   1 www      users         169 Apr 19 17:45 environment.hist 
-rw-r-----   1 www      users       12315 Oct 25  2000 junk.db 
-rw-r--r--   1 www      users        1590 Nov  4  1999 junk.hist 
-rw-r-----   1 www      users       23626 Apr 19 17:45 msu_12679c3ed543a25msul1.db 
-rw-r--r--   1 www      users        3363 Apr 19 17:45 msu_12679c3ed543a25msul1.hist 
-rw-r-----   1 www      users       18497 Dec 21 11:25 msu_1827338c7d339b4msul1.db 
-rw-r--r--   1 www      users        3801 Dec 21 11:25 msu_1827338c7d339b4msul1.hist 
-rw-r-----   1 www      users       12470 Apr 19 17:45 nohist_annotations.db 
-rw-r-----   1 www      users      765954 Apr 19 17:45 nohist_email.db 
-rw-r--r--   1 www      users      710631 Apr 19 17:45 nohist_email.hist 
-rw-r--r--   1 www      users          13 Apr 19 17:45 passwd 
-rw-r--r--   1 www      users       12802 May  3 13:08 roles.db 
-rw-r--r--   1 www      users        1316 Apr 12 16:05 roles.hist 

Figure  1.3   Directory listing of user’s home directory 

Courses are assigned to users, not vice versa. Internally, courses are handled like 

users without login privileges. The username is a unique ID, for example 

msu_12679c3ed543a25msul1 – every course in every semester has a unique ID, and 

there is no semester transition. The user-data of the course includes the full name of the 

course, a pointer to its top-level resource map (“course map”), and any associated 

deadlines, spreadsheets, etc., as well as a course enrollment list. The latter is somewhat 
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redundant, since in principle, this list could be produced by going through the roles of all 

users, and looking for the valid role for a student in that course. 

 

ls -alF /home/httpd/lonUsers/msu/1/2/6/12679c3ed543a25msul1/ 
 
-rw-r-----   1 www      users       17155 Apr 25 16:20 classlist.db 
-rw-r--r--   1 www      users       60912 Apr 25 16:20 classlist.hist 
-rw-r-----   1 www      users       12354 Jan  4 16:40 environment.db 
-rw-r--r--   1 www      users          82 Jan  4 16:40 environment.hist 
-rw-r-----   1 www      users      103030 May 15 14:47 nohist_calculatedsheets.db 
-rw-r-----   1 www      users       13050 May  9 21:04 nohist_expirationdates.db 
-rw-r--r--   1 www      users           6 Jan  4 16:40 passwd 
-rw-r-----   1 www      users       17457 May  9 21:04 resourcedata.db 
-rw-r--r--   1 www      users        8888 May  9 21:04 resourcedata.hist 

Figure  1.4   Directory listing of course’s home directory 

An example of course data is shown in Figure 1.4.  classlist is the list of 

students in the course, environment includes the course’s full name, etc, and 

resourcedata are deadlines, etc. The parameters for homework problems are stored 

in these files. 

To identify a specific instance of a resource, LON-CAPA uses symbols or “symbs.” 

These identifiers are built from the URL of the map, the resource number of the resource 

in the map, and the URL of the resource itself. The latter is somewhat redundant, but 

might help if maps change. An example is 

msu/korte/parts/part1.sequence___19___msu/korte/tests/part12.problem 

The respective map entry is 

 

 <resource id="19" src="/res/msu/korte/tests/part12.problem"      

  title="Problem 2"> 

 </resource> 
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Symbs are used by the random number generator, as well as to store and restore data 

specific to a certain instance of a problem. More details of the stored data and their exact 

structures will be explained in chapter three, when we will describe the data acquisition 

of the system. 

1.3.6  Resource Evaluation in LON-CAPA 

One of the most challenging aspects of the system is to provide instructors with 

information concerning the quality and effectiveness of the various materials in the 

resource pool on student understanding of concepts. These materials can include web 

pages, demonstrations, simulations, and individualized problems designed for use on 

homework assignments, quizzes, and examinations. The system generates a range of 

statistics that can be useful in evaluating the degree to which individual problems are 

effective in promoting formative learning for students. For example, each exam problem 

contains attached metadata that catalog its degree of difficulty and discrimination for 

students at different phases in their education (i.e., introductory college courses, 

advanced college courses, and so on). To evaluate resource pool materials, a standardized 

format is required so that materials from different sources can be compared. This helps 

resource users to select the most effective materials available.  

LON-CAPA has also provided questionnaires which are completed by faculty and 

students who use the educational materials to assess the quality and efficacy of resources. 

In addition to providing the questionnaires and using the statistical reports, we  

investigate here methods to find criteria for classifying students and grouping problems 

by examining logged data such as: time spent on a particular resource, resources visited 
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(other web pages), due date for each homework, the difficulty of problems (observed 

statistically) and others. Thus, floods of data on individual usage patterns need to be 

gathered and sorted – especially as students go through multiple steps to solve problems, 

and choose between multiple representations of the same educational objects like video 

lecture demonstrations, a derivation, a worked example, case-studies, and etc. As the 

resource pool grows, multiple content representations will be available for use by 

students.  

There has been an increasing demand for automated methods of resource evaluation. 

One such method is data mining, which is the focus of this research. Since the LON-

CAPA data analyses are specific to the field of education, it is important to recognize the 

general context of using artificial intelligence in education.  

The following section presents a brief review of intelligent tutoring systems – one 

typical application of artificial intelligence in the field of education. Note that herein the 

purpose is not to develop an intelligent tutoring system; instead we apply the main ideas 

of intelligent tutoring systems in an online environment, and implement data mining 

methods to improve the performance of the educational web-based system, LON-CAPA.   

1.4 Intelligent Tutoring Systems (ITSs) 

Intelligent tutoring systems are computer-based instructional systems that attempt to 

determine information about a student’s learning status, and use that information to 

dynamically adapt the instruction to fit the student’s needs.  Examples of educational 

researchers who have investigated this area of inquiry are numerous: Urban–Lurain, 

1996; Petrushin, 1995; Benyon and Murray, 1993; Winkkels, 1992; Farr and Psotka, 
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1992; Venezky and Osin, 1991; Larkin and Cabay, 1991; Goodyear, 1990; Frasson and 

Gauthier, 1988; Wenger, 1987; Yazdani, 1987. ITSs are often known as knowledge-

based tutors, because they have separate knowledge bases for different domain 

knowledge. The knowledge bases specify what to teach and different instructional 

strategies specify how to teach (Murray, 1996). 

One of the fundamental assumptions in ITS design is from an important experiment 

(Bloom, 1956) in learning theory and cognitive psychology, which states that 

individualized instruction is far superior to class-room style learning. Both the content 

and style of instruction can be continuously adapted to best meet the needs of a student 

(Bloom, 1984). Educational psychologists report that students learn best “by doing”, 

learn through their mistakes, and learn by constructing knowledge in a very 

individualized way (Kafaei and Resnik, 1996; Ginsburg and Opper, 1979; Bruner, 1966). 

For many years, researchers have argued that individualized learning offers the most 

effective and cognitively efficient learning for most students (Juel, 1996; Woolf, 1987).  

Intelligent tutoring systems epitomize the principle of individualized instruction. 

Previous studies have found that intelligent tutoring systems can be highly effective 

learning aids (Shute and Regine, 1990). Shute (1991) evaluates several intelligent 

tutoring systems to judge how they live up to the main promise of providing more 

effective and efficient learning in relation to traditional instructional techniques. Results 

of such studies show that ITSs do accelerate learning.  
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1.4.1  Learning Enhancement in ITSs   

In one study, Bloom (1984) states that conventional teaching methods provide the 

least effective method of learning. As instruction becomes more focused and 

individualized, learning is enhanced. He compares students’ scores on achievement tests 

using three forms of instruction: conventional teaching, mastery teaching, and 

individualized tutoring. Mastery teaching is an instructional technique whereby a teacher 

supplements a lecture with diagnostic tests to determine where students are having 

problems, and adjusts the instruction accordingly. The results of this comparison are 

shown in Figure 1.5. Students receiving conventional teaching scored in the 50th 

percentile, students receiving mastery teaching scored in the 84th percentile, while 

students receiving individualized tutoring scored in the 98th percentile.  

 50% 84% 98%
Percentiles: Summative Achievement Scores

Conventional (1 : 30)

Mastery Learning (1 : 30)

Individualized Tutoring (1 : 1)

Number
of

Students

 

Figure  1.5   Distributions for different learning conditions (Adapted from Bloom, 
1984) 
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Bloom replicates these results four times with three different age groups for two 

different domains, and thus, provides concrete evidence that tutoring is one of the most 

effective educational delivery methods available. 

Since ITSs attempt to provide more effective learning through individualized 

instruction, many computer-assisted instruction techniques exist that can present 

instruction and interact with students in a tutor-like fashion, individually or in small 

groups. The incorporation of artificial intelligence techniques and expert systems 

technology to computer-assisted instruction systems gave rise to intelligent tutoring 

systems – i.e., systems that model the learner’s understanding of a topic and adapt 

instruction accordingly. A few examples of systematically controlled evaluations of ITSs 

reported in the literature are shown in Table 1.1. 

Table 1.1  Different Specific ITSs and their affects on learning rate 

 ITS Literature Objective progress 

LISP tutor (Anderson, 1990) Instructing LISP 
programming 1/3-2/3 less time 

Smithtown (Shute and Glaser, 
1990) 

Teach scientific inquiry 
skills 

1/2 time, same 
knowledge 

Sherlock (Lesgold et al.,1990) Avionics troubleshooting 1/5 time, same 
knowledge 

Pascal ITS (Shute, 1991) Teach Pascal 
programming 

1/3 time, same 
knowledge 

Stat Lady (Shute et al., 1993) Instruct statistical 
procedures More performance 

Geometry 
Tutor 

(Anderson et al., 
1985) Teach geometry theorems Better solving 
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Shute and Poksta (1996) examine the results of these evaluations, which show that 

the tutors do accelerate learning with no degradation in outcome performance. The tutors 

should be evaluated with respect to the promises of ITSs – speed and effectiveness. In all 

cases, individuals using ITSs learned faster, and performed at least as well as those 

learning from traditional teaching environments. The results show that these 

individualized tutors could not only reduce the variance of outcome scores, but also 

increase the mean outcome dramatically. 

1.4.2  Basic Architecture of an ITS 

There is no standard architecture for an ITS. Nevertheless, four components emerge 

from the literature as part of an ITS (Wasson, 1997; Costa, 1992; Polson and Richardson, 

1988; Yazdani, 1987; Wenger, 1987; Sleeman and Brown, 1982). These are the student 

model, the pedagogical module, the expert model, and the communication module or 

interface. These four components and their interactions are illustrated in Figure  1.6.  

 
Figure  1.6   Components of an Intelligent Tutoring System (ITS) 

Pedagogical Student 

Communication 

Expert Model

Learner 
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The student model stores information of each individual learner. For example, such a 

model tracks how well a student is performing on the material being taught or records 

incorrect responses that may indicate misconceptions. Since the purpose of the student 

model is to provide data for the pedagogical module of the system, all of the information 

gathered should be usable by the tutor.  

The pedagogical module provides a model of the teaching process. For example, 

information about when to review, when to present a new topic, and which topic to 

present is controlled by this module. As mentioned earlier, the student model is used as 

input to this component, so the pedagogical decisions reflect the differing needs of each 

student.  

The expert model contains the domain knowledge, which is the information being 

taught to the learner. However, it is more than just a representation of the data; it is a 

model of how someone skilled in a particular domain represents the knowledge. By using 

an expert model, the tutor can compare the learner's solution to the expert's solution, 

pinpointing the places where the learner has difficulties. This component contains 

information the tutor is teaching, and is the most important since without it, there would 

be nothing to teach the student. Generally, this aspect of ITS requires significant 

knowledge engineering to represent a domain so that other parts of the tutor can access it.  

The communication module controls interactions with a student, including the 

dialogue and the screen layouts. For example, it determines how the material should be 

presented to the student in the most effective way.  
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These four components – the student model, the pedagogical module, the expert 

model, and the communication module – shared by all ITSs, interact to provide the 

individualized educational experience promised by technology. The orientation or 

structure of each of these modules, however, varies in form depending on the particular 

ITS.   

Current research trends focus on making tutoring systems truly “intelligent,” in the 

artificial sense of the word. The evolution of ITSs demands more controlled research in 

four areas of intelligence: the domain expert, student model, tutor, and interface. 

• The domain knowledge must be understood by the computer well enough for the 

expert model to draw inferences or solve problems in the domain. 

• The system must be able to deduce a student’s approximation of that knowledge. 

• The tutor must be intelligent to the point where it can reduce differences between the 

expert and student performance. 

• The interface must possess intelligence in order to determine the most effective way 

to present information to the student. 

For ITSs to have a great impact on education, these and other issues must be 

resolved. To take advantage of newer, more effective instructional techniques, ITSs of 

the future will have to allow for increased student initiative and inter-student 

collaboration (Shute and Psotka, 1996). ITSs must also assess learning as it transfers to 

authentic tasks, not standardized tests, and establish connections across fields so that 

topics are not learned in isolation. A more fruitful approach for ITS development may be 

to develop specific cognitive tools, for a given domain or applicable across domains. 
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Such a transition would allow future ITSs to be everywhere, as embedded assistants that 

explain, critique, provide online support, coach, and perform other ITS activities. 

1.4.3 Learning and Cognition Issues for ITS Development and Use 

There are some findings in the areas of cognition and learning processes that impact 

the development and use of intelligent tutoring systems. Many recent findings are paving 

the way towards improving our understanding of learners and learning (Bransford, Brown 

et al., 2000). Learners have preconceptions about how the world works. If their initial 

understanding is not referenced or activated during the learning process, they may fail to 

understand any new concepts or information. 

One key finding regarding competence in a domain is the need to have a more than a 

deep knowledge base of information related to that domain. One must also be able to 

understand that knowledge within the context of a conceptual framework – the ability to 

organize that knowledge in a manner that facilitates its use. A key finding in the learning 

and transfer literature is that organizing information into a conceptual framework allows 

for greater transfer of knowledge. By developing a conceptual framework, students are 

able to apply their knowledge in new situations and to learn related information more 

quickly. For example, a student who has learned problem solving for one topic in the 

context of a conceptual framework will use that ability to guide the acquisition of new 

information for a different topic within the same framework. This fact is explained by 

Hume (1999): "When we have lived any time, and have been accustomed to the 

uniformity of nature, we acquire a general habit, by which we always transfer the known 

to the unknown, and conceive the latter to resemble the former.” 
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A relationship exists between the learning and transfer of knowledge to new 

situations. Transferring is usually a function of the relationships between what is learned 

and what is tested. For students to transfer knowledge successfully across domains, they 

must conceive of their knowledge base in terms of continuous, rather than discrete steps. 

Recent research by Singley and Anderson indicates that the transfer of knowledge 

between tasks is a function of the degree to which the tasks share cognitive elements 

(Singley and Anderson, 1989). In their study, Singley and Anderson taught students 

several text editors, one after the other. They found that students learned subsequent text 

editors more rapidly and that the number of procedural elements shared by the two text 

editors predicted the amount of transfer. Their results showed that there was large transfer 

across editors that were very different in surface structures but had common abstract 

structures. Singley and Anderson were able to generate similar results for the transfer of 

mathematical competence across multiple domains. 

Emerging computer-based technologies hold great promise as a means of supporting 

and promoting learning. There are several ways that such technology can be used to help 

meet the challenges of developing effective learning environments (El-Sheikh, 2001): 

• Bringing real-world problems to the learning environment. 

• Providing “scaffolding” support to students during the learning process. 

Scaffolding allows students to participate in complex cognitive experiences, 

such as model-based learning, that is more difficult without technical support. 

• Increasing opportunities for learners to receive feedback and guidance from 

software tutors and learning environments. 
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• Building local and global communities of teachers, administrators, students, 

and other interested learners. 

• Expanding opportunities for teachers’ learning. 

Learning environments need to be developed and implemented with a full 

understanding of the principles of learning and developmental psychology. In addition, 

these new learning environments need to be assessed carefully, including how their use 

can facilitate learning, as well as the cognitive, social, and learning consequences of 

using these new tools. 

1.5 Summary 

This research addresses data mining methods for extracting useful and interesting 

knowledge from the large data sets of students using LON-CAPA educational resources. 

The purpose is to develop techniques that will provide information that can be usefully 

applied by instructors to increase student learning, detect anomalies in homework 

problems, design the curricula more effectively, predict the approaches that students will 

take for some types of problems, and provide appropriate advising for students in a 

timely manner, etc. This introductory chapter provided an overview of the LON-CAPA 

system, the context in which we are going to use data mining methods. In addition, a 

brief introduction to Intelligent Tutoring Systems provided examples of expert systems 

and artificial intelligence in educational software.  Following this, it is necessary to 

analyze data mining methods that can be applied within this context in greater detail.
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Chapter 2 Background on Data Mining Methods 

In the previous chapter we described the basic concepts of data mining. This chapter 

focuses on methods and algorithms in the context of descriptive and predictive tasks of 

data mining. We describe clustering methods in data mining, and follow this with a study 

of the classification methods developed in related research while extending them for 

predictive purposes. The research background for both association rule and sequential 

pattern mining will be presented in chapter five. 

2.1 Classification and Predictive Modeling 

Classification is used to find a model that segregates data into predefined classes. 

Thus classification is based on the features present in the data. The result is a description 

of the present data and a better understanding of each class in the database. Thus 

classification provides a model for describing future data (Duda et al., 2001; McLachlan, 

1992; Weiss and Kulikowski, 1991; Hand, 1987). Prediction helps users make a decision. 

Predictive modeling for knowledge discovery in databases predicts unknown or future 

values of some attributes of interest based on the values of other attributes in a database 

(Masand and Shapiro, 1996). Different methodologies have been used for classification 

and developing predictive modeling including Bayesian inference (Kontkanen et al., 

1996), neural net approaches (Lange, 1996), decision tree-based methods (Quinlan, 1986) 

and genetic algorithms-based approaches (Punch et al., 1995). 
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2.1.1  Bayesian Classifier  

One of the major statistical methods in data mining is Bayesian inference. The naive 

Bayesian classifier provides a simple and effective approach to classifier learning. It 

assumes that all class-conditional probability densities are completely specified. Even 

though this assumption is often violated in real world data sets, a naïve Bayesian 

classifier (where a small number of parameters are not completely specified) is employed 

(Jain et al., 2000; Duda et al., 2001; Wu et al., 1991). The Bayes classifier shown in 

Figure 2.1 can be explained as follows: A set of patterns aj, j = 1,…,n, is given, and every 

pattern is sensed by a sensing device which is capable of capturing the features. Each 

pattern is considered in terms of a measurement vector xi. A pattern aj belongs to a 

classification set iω , which includes all the possible classes that can be assigned to 

pattern aj. For the sake of simplicity, all feature measurements are considered identical 

and each pattern belongs only to one of the m-possible classes iω , i = 1,…,m. 

 

Figure  2.1     The Bayesian Classification Process (Adapted from Wu et al., 1991) 

To classify a pattern into one of the m classes, a feature space is constructed 

according to the measurement vector x, which is considered to be a measurement of true 
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values damaged by random noisy data. The class-conditional probability density 

functions estimated from training data represent the uncertainty in discovered knowledge. 

 )|( ixp ω , i = 1,…,m. (2.1) 
 

Bayes decision theory states that the a-posteriori probability that an event may be 

calculated according to the following equation:  

)(
)()|(

)|(
xp

pxp
xp ii

i
ωω

ω =  , i = 1,…,m. (2.2) 

 

Eventually, the decision criteria can be applied for classification. To gain the optimal 

solution, the maximum likelihood classification or the Bayesian minimum error decision 

rule is applied. It is obtained by minimizing the misclassification and errors in 

classification. Thus, a pattern is classified into class iω  with the highest posteriori 

probability or likelihood: 

.,...,1},{max mjgg iji ==  (2.3) 
 

The quadratic discriminant function using the Bayesian approach is the most 

common method in supervised parametric classifiers. If the feature vectors are assumed 

to be Gaussian in distribution, the parameters of the Gaussians are estimated using 

maximum likelihood estimations. The discriminant function decision rule and the a-

posteriori probabilities for each classification are calculated for each sample test, x, using 

the following equation (Duda et al., 2001): 
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where x is a d×1 vector representing any point in the d-dimensional feature space, µi 

(also a d × 1 vector) is the sample mean of the ith class training sample, and i∑ (d × d) is 

the sample covariance matrix of the ith class training sample. To obtain the optimal 

solution, the maximum likelihood classification or the Bayesian minimum error decision 

rule is applied. The sample is then assigned to the class that produces the highest a-

posteriori probability. It is obtained by minimizing the misclassification and errors in 

classification.  

2.1.2 Decision tree-based method 

Decision tree-based methods are popular methods for use in a data mining context. 

The decision tree classifier uses a hierarchical or layered approach to classification. Each 

vertex in the tree represents a single test or decision. The outgoing edges of a vertex 

correspond to all possible outcomes of the test at that vertex. These outcomes partition 

the set of data into several subsets, which are identified by every leaf in the tree. A leaf of 

the tree specifies the expected value of the categorical attribute for the records described 

by the path from the root to that leaf. Learned trees can also be represented as sets of if-

then-else rules. (Mitchell, 1997) 

An instance is classified by starting at the root node of the tree. At each level of the 

tree the attributes of an instance are matched to a number of mutually exclusive nodes. 

The leaf nodes assign an instance to a class. The classification of an instance therefore 

involves a sequence of tests where each successive test narrows the interpretation. The 

sequence of tests for the classifier is determined during a training period. Given some 

new data, the ideal solution would test all possible sequences of actions on the attributes 
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of the new data in order to find the sequence resulting in the minimum number of 

misclassifications.  

Tree-based classifiers have an important role in pattern recognition research because 

they are particularly useful with non-metric data (Duda et al., 2001). Decision tree 

methods are robust to errors, including both errors in classifying the training examples 

and errors in the attribute values that describe these examples. Decision tree can be used 

when the data contain missing attribute values. (Mitchell, 1997) 

 Most algorithms that have been developed for decision trees are based on a core 

algorithm that uses a top-down, recursive, greedy search on the space of all possible 

decision trees. This approach is implemented by ID3 algorithm2 (Quinlan, 1986) and its 

successor C4.5 (Quinlan, 1993). C4.5 is an extension of ID3 that accounts for unavailable 

values, continuous attribute value ranges, pruning of decision trees, and rule derivation. 

The rest of this section discusses some important issues in decision trees classifiers. 

2.1.2.1  What is the best feature for splitting? 

The first question that arises in all tree-based algorithms concerns which properties 

are tested in each node? In other words, which attribute is the “most informative” for the 

classifier? We would like to select the attribute that is the most informative of the 

attributes not yet considered in the path from the root. This establishes what a "Good" 

decision tree is. Entropy is used to measure a node’s information. Claude Shannon (1984) 

introduced this notion in “Information Theory”. Based on entropy, a statistical property 

                                                 

2 ID3 got this name because it was the third version of “interactive dichotomizer” procedure. 
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called information gain measures how well a given attribute separates the training 

examples in relation to their target classes.   

2.1.2.1.1 Entropy impurity 

Entropy characterizes the impurity of an arbitrary collection of examples S at a 

specific node N. Sometimes (Duda et al., 2001) the impurity of a node N is denoted by 

i(N).  

)(log)()()( 2 j
j

j PPNiSEntroy ωω∑−==  (2.5) 

 

where )( jP ω  is the fraction of examples at node N that go to category jω .  

If all the patterns are from the same category the impurity is 0, otherwise it is 

positive; if all categories are equally distributed at node N then the impurity has its 

greatest value 1.  

The key question then is, on the decision path from the root to node N, what features 

and their values should we select for the test at node N when property query T is used? A 

heuristic is suggested to select a query that decreases the impurity as much as possible 

(Duda et al., 2001). 

)()1()()()( RLLL NiPNiPNiNi −−−=∆  (2.6) 
 

where LN  and RN  are the left and right descendent nodes, and the )( LNi  and )( RNi  are 

their impurities respectively, and LP  is fraction of patterns at node N  that will go to LN  

when the property query T  is used. The goal of the heuristic is to maximize i∆ , thus 
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minimizing the impurities corresponds to an information gain which is provided by the 

query. 

2.1.2.1.2 Gini impurity 

One can rank and order each splitting rule on the basis of the quality-of-split 

criterion. Gini is the default rule in CART because it is often the most efficient splitting 

rule. Essentially, it measures how well the splitting rule separates the classes contained in 

the parent node (Duda et al., 2001).  
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As shown in the equation, it is strongly peaked when probabilities are equal. So what 

is Gini trying to do?  Gini attempts to separate classes by focusing on one class at a time.  

It will always favor working on the largest or, if you use costs or weights, the most 

"important" class in a node.  

2.1.2.1.3  Twoing impurity  

An alternative criterion also available in CART is Twoing impurity. The philosophy 

of Twoing is different from that of Gini.  Rather than initially pulling out a single class, 

Twoing first segments the classes into two groups, attempting to find groups that together 

add up to 50 percent of the data. Twoing then searches for a split to separate the two 

subgroups (Duda et al., 2001).  This is an ideal split.  It is unlikely that any real-world 

database would allow you to cleanly separate four important classes into two subgroups 

in this way.  However, splits that approach this ideal might be possible, and these are the 

splits that Twoing seeks to find. 
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2.1.2.2  How to Avoid Overfitting 

If we continue to grow the tree until each leaf node corresponds to the lowest 

impurity then the data is typically overfit. In some cases every node corresponds to a 

single training input. In such cases we cannot expect an appropriate generalization in 

noisy problems having high Bayes error (Duda et al. 2001; Russell and Norvig, 1997). 

On the other hand if we stop splitting early, then a high performance tree classifier will 

not be achieved. There are several approaches to avoid overfitting in the training phase of 

tree-based classification: 

2.1.2.2.1  Cross-Validation 

Cross-validation is a technique to eliminate the occurrence of overfitting. The main 

idea of cross-validation is to estimate how well the current hypothesis will predict unseen 

data (Duda et al. 2001; Russell and Norvig, 1997). This is done by randomly dividing the 

data into two subsets, training and test. Usually, the test subset is a fraction of all of the 

data, i.e., 10%. The hypothesis induced from the training phase is tested on the rest of 

data to get the prediction performance.  This should be repeated on different subsets of 

data, and then the result averaged. Cross-validation should be used in order to select a 

tree with good prediction performance. 

2.1.2.2.2  Setting a threshold 

Another method for overfitting avoidance is to consider a small threshold value in 

minimizing the impurity. We stop splitting when the impurity at a node is reduced by less 

than the considered threshold. The benefit of this method over the cross-validation is that 
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the tree is trained using all the training data. Another benefit of this method is that leaf 

nodes can lie at different levels of the tree. 

2.1.2.2.3  Pruning 

The principal alternative of stop-splitting is pruning (Duda et al., 2001). One 

approach, called reduced-error pruning (Quinlan, 1987), sets each node in the decision 

tree to be candidate for pruning. “Pruning a decision node consists of removing the 

subtree rooted at that node, making it a leaf node, and assigning it the most common 

classification of the training examples affiliated with that node. Nodes are removed only 

if the resulting pruned tree performs no worse than the original over the validation set.” 

(Mitchell, 1997) 

In C4.5, Quinlan (1993) applied a successful technique for finding high accuracy 

hypotheses during the pruning process, which is called rule post pruning. It involves the 

following steps: 

1. Induce the decision tree from the training set, growing the tree until the training data 

is fully fitted as well as possible, allowing overfitting to occur. 

2. Convert the learned tree into an equivalent set of rules by creating a rule 

corresponding to a path from the root to a leaf node. 

3. Prune each rule by deleting any preconditions that lead to promoting the estimated 

accuracy. 

4. Sort the pruned rules by their estimated accuracy, and set them in a sequence for 

classifying the instances. 
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Why should we prefer a short hypothesis? We wish to create small decision trees so 

that records can be identified after only a few questions. According to Occam's Razor, 

“Prefer the simplest hypothesis that fits the data” (Duda et al., 2001).  

2.1.2.3  Drawbacks of decision tree 

The drawback of decision trees is that they are implicitly limited to talking about a 

single data point. One cannot consider two or more objects to make a decision about, thus 

the decision boundary in this classifier is linear and often too coarse. In other words, once 

a node is split, the elements in a child stay in that sub-tree forever. Therefore, the 

decision tree classifier often yields a sub-optimal decision boundary. Another drawback 

of decision trees is that they are very instable in the presence of noisy data (Duda et al., 

2001;  Mitchell, 1997). 

2.1.3 Neural Network Approach 

A neuron is a special biological cell with information processing ability (Jain et al., 

1996). The classification approach based on an Artificial Neural Network (ANN) (a 

connectionist model) generates a lower classification error rate than the decision tree 

approach in several cases, yet it requires more training time (Quinlan, 1994; Russle and 

Norvig, 1995). A neural network is usually a layered graph with the output of one node 

feeding into one or more nodes in the next layer.  

The Multi-layer Perceptron (MLP) is a basic feedforward artificial neural network 

using a back-propagation algorithm for training. That is, during training, information is 

propagated back through the network and used to update connection weights. According 

to Ruck et al., (1990), multi-layer perceptron training uses the back-propagation learning 
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algorithm to approximate the optimal discriminant function defined by Bayesian theory. 

The output of the MLP approximates the posteriori probability functions of the classes 

being trained. The Sigmoidial activation function is used for learning the input weight 

vectors in the training phase as follows:                                    
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(2.8) 

 

Tuning each of the learning rate, the number of epochs, the number of hidden layers, 

and the number of neurons (nodes) in every hidden layer is a very difficult task and all 

must be set appropriately to reach a good performance for MLP. In each epoch the input 

data are used with the present weights to determine the errors, then back-propagated 

errors are computed and weights updated. A bias is provided for the hidden layers and 

output. 

 

 

 

 

 

 

 

 

 

 

Figure  2.2   A Three Layer Feedforward Neural Network (Lu et al., 1995) 
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Adopting data mining techniques to MLP is not possible without representing the 

data in an explicit way. Lu et al.(1995) made an effort to overcome this obstacle by using 

a three-layer neural network to perform classification, which is the technique employed 

in this study. ANNs are made up of many simple computational elements (neurons), 

which are densely interconnected. Figure 2.2 shows a three-layer feedforward network, 

which has an input layer, a hidden layer, and an output layer. A node (neuron) in the 

network has a number of inputs and a single output. Every link in the network is 

associated with a weight. For example, node Ni has ix1 , …, i
nx as its inputs and ai as its 

output. The input links of Ni have weights iw1 , …, i
nw . A node generates its output (the 

activation value) by summing up its input weights, subtracting a threshold and passing 

the result to a non-linear function f (activation function). Outputs from neurons in a layer 

are fed as inputs to next layer. Thus, when an input tuple ( 1x , …, xn) is applied to the 

input layer of a network, an output tuple ( 1c , …, cm) is obtained, where ci has value 1 if 

the input tuple belongs to class ci   and 0  otherwise. 

Lu et al.'s approach uses an ANN to mine classification rules through three steps 

explained as follows: 

1. In the first step, a three-layer network is trained to find the best set of weights to 

classify the input data at a satisfactory level of accuracy. The initial weights are 

selected randomly from the interval [-1, 1]. These weights are then updated 

according to the gradient of the error function. This training phase is terminated 

when the norm of the gradient falls below a preset threshold. 
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2. Redundant links (paths) and nodes (neurons) that is, those nodes that don’t have 

any effects on performance are removed and therefore, and a pruned network is 

obtained. 

3. Comprehensible and concise classification rules are extracted from the pruned 

network in the form of: “if (a1  θ   v1) & (a2  θ   v2) & … & (an  θ   vn)  then  Cj  

where an ai  is an input attribute value, vi  is a constant, θ  is a relational operator 

(=, ,≤  ≥ , <,>),  and Cj  is one of the class labels. 

2.1.4 k-Nearest Neighbor (kNN) Decision Rule 

The k-nearest neighbor algorithm makes a classification for a given sample without 

making any assumptions about the distribution of the training and testing data. Each 

testing sample must be compared to all the samples in the training set in order to classify 

the sample. In order to make a decision using this algorithm, the distances between the 

testing sample and all the samples in the training set must first be calculated. In this 

proposal, the Euclidean distance is calculated, but, in general, any distance measurement 

may be used. The euclidean distance metric requires normalization of all features into the 

same range. At this point, the k closest neighbors of the given sample are determined 

where k represents an integer number between 1 and the total number of samples. The 

testing sample is then assigned to the label most frequently represented among the k 

nearest samples (Duda et al., 2001). The value of k that is chosen for this decision rule 

has an affect on the accuracy of the decision rule. The k-nearest neighbor classifier is a 

nonparametric classifier that is said to yield an efficient performance for optimal values 

of k.  
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2.1.5 Parzen Window classifier 

In this approach a d-dimensional window is formed around all the training samples 

and then, based on the number of patterns that fit in those windows, the probability 

estimates of the different classes are made. This can be stated as follows (Duda et al., 

2001): 
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where nv is a d-dimensional hypercube in the feature space, and ϕ  is a general 

probability distribution function. )(xpn  is the probability that the pattern fits in the given 

class. It is necessary to choose the form of ϕ . One can assume a multivariate normal 

distribution forϕ . The windows are centered on the training points, hence, the mean is 

known, but there is no predefined method to determine the variance. Depending upon the 

problem under study, the variance is estimated by minimizing the error rate and 

maximizing the classifier performance. Therefore, it needs to be determined by trial and 

error. In our experiment we assume that the classes are independent and thus the 

covariance matrices for the Gaussian distribution are diagonal.  
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2.2 Clustering 

Data clustering is a sub-field of data mining dedicated to incorporating techniques 

for finding similar groups within a large database. Data clustering is a tool for exploring 

data and finding a valid and appropriate structure for grouping and classifying the data 

(Jain & Dubes, 1988). A cluster indicates a number of similar objects, such that the 

members inside a cluster are as similar as possible (homogeneity), while at the same time 

the objects within different clusters are as dissimilar as possible (heterogeneity) (Hoppner 

et al., 2000). The property of homogeneity is similar to the cohesion attribute between 

objects of a class in software engineering, while heterogeneity is similar to the coupling 

attribute between the objects of different classes.  

Unlike data classification, data clustering does not require category labels or 

predefined group information. Thus, clustering has been studied in the field of machine 

learning as a type of unsupervised learning, because it relies on “learning from 

observation” instead of “learning from examples.” The pattern proximity matrix could be 

measured by a distance function defined on any pairs of patterns (Jain & Dubes, 1988; 

Duda et al., 2001). ). A simple distance measure i.e., Euclidean distance can be used to 

express dissimilarity between every two patterns. 

The grouping step can be performed in a number of ways. “Hierarchical clustering 

algorithms produce a nest series of partitions based on a criterion for merging or splitting 

clusters based on similarity. Partitional clustering algorithms identify the partition that 

optimizes a clustering criterion” (Jain et al. 1999). Two general categories of clustering 
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methods are partitioning method, and hierarchical method – both of which are employed 

in analysis of the LON-CAPA data sets. 

2.2.1  Partitional Methods 

A partitional algorithm assuming a set of n objects in d-dimensional space and an 

input parameter, k, organizes the objects into k clusters such that the total deviation of 

each object from its cluster center is minimized. The deviation of an object in a cluster 

depends on the similarity function, which in turn depends on the criterion employed to 

distinguish the objects of different clusters. Clusters can be of arbitrary shapes and sizes 

in multidimensional space. Every particular clustering criterion implies a specified 

structure for the data. These criteria are employed in some of the most popular 

partitioning methods: square error approach, mixture model, mode estimation, graph 

connectivity, and nearest neighbor relationship. 

The most common approach in these methods is to optimize the criterion function 

using an iterative, hill-climbing technique. Starting from an initial partition, objects are 

moved from one cluster to another in an effort to improve the value of the criterion 

function (Jain & Dubes, 1988). Each algorithm has a different way for representing its 

clusters.  

2.2.1.1  k-mean Algorithm 

The k-means algorithm is the simplest and most commonly used clustering algorithm 

employing a square error criterion (McQueen 1967). It is computationally fast, and 

iteratively partitions a data set into k disjoint clusters, where the value of k is an 

algorithmic input (Jain & Dubes, 1988; Duda et al. 2001). The goal is to obtain the 
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partition (usually of hyper-spherical shape) with the smallest square-error. Suppose k 

clusters {C1, C2, …, Ck} such that Ck has nk patterns. The mean vector or center of cluster 

Ck  

  
(2.10) 

 

where ni  is number of patterns in cluster Ci, (among exactly k clusters: C1, C2, …, Ck) and 

x is the point in space representing the given object. 

The total squared-error:                             where    

which is computed in this way: 

The steps of the iterative algorithm for partitional clustering are as follows:  

1. Choose an initial partition with k < n clusters (µ1, µ2 , … , µk) are cluster centers 

and n is the number of patterns). 

2. Generate a new partition by assigning a pattern to its nearest cluster center µi. 

3. Recompute new cluster centers µi. 

4. Go to step 2 unless there is no change in µi. 

5. Return µ1, µ2 , … , µk as the mean values of C1, C2, …, Ck. 

 

The idea behind this iterative process is to start from an initial partition assigning the 

patterns to clusters and to find a final partition containing k clusters that minimizes E for 

fixed k. In step 3 of this algorithm, k-means assigns each object to its nearest center 

forming a set of clusters. In step 4, all the centers of these new clusters are recomputed 

with function E by taking the mean value of all objects in every cluster. This iteration is 
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repeated until the criterion function E no longer changes. The k-means algorithm is an 

efficient algorithm with the time complexity of O(ndkr), where n is the total  number of 

objects, d is the number of features, k is the number of clusters, and r is the number of 

iterations such that r<k<n.  

The weaknesses of this algorithm include a requirement to specify the parameter k, 

the inability to find arbitrarily shaped clusters, and a high sensitivity to noise and outlier 

data. Because of this, Jain & Dubes, (1988) have added a step before step 5: “Adjust the 

number of clusters by merging and splitting the existing clusters or by removing small, or 

outlier clusters”. 

Fuzzy k-means clustering (soft clustering). In the k-means algorithm, each data point 

is allowed to be in exactly one cluster. In the fuzzy clustering algorithm we relax this 

condition and assume that each pattern has some “fuzzy” membership in a cluster. That 

is, each object is permitted to belong to more than one cluster with a graded membership. 

Fuzzy clustering has three main advantages: 1) it maps numeric values into more abstract 

measures (fuzzification); 2) student features (in LON-CAPA system) may overlap 

multiple abstract measures, and there may be a need to find a way to cluster under such 

circumstances; and 3) most real-world classes are fuzzy rather than crisp. Therefore, it is 

natural to consider the fuzzy set theory as a useful tool to deal with the classification 

problem (Dumitrescu et al., 2000).  

Some of the fuzzy algorithms are modifications of the algorithms of the square error 

type such as k-means algorithm. The definition of the membership function is the most 

challenging point in a fuzzy algorithm. Baker (1978) has presented a membership 

function based on similarity decomposition. The similarity or affinity function can be 
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based on the different concept such as Euclidean distance or probability. Baker and Jain 

(1981) define a membership function based on mean cluster vectors. Fuzzy partitional 

clustering has the same steps as the squared error algorithm, which is explained in the k-

means algorithm section.  

2.2.1.2  Graph Connectivity 

A graph can represent the relationship between patterns. Every vertex represents a 

pattern and every edge represents the relation between two patterns. The edge weights are 

distances between two adjacent vertices. The criterion function here is that the pairs of 

patterns, which belong to the same cluster, should be closer than any pair belonging to 

different clusters.  Several graph structures, such as minimum spanning trees (MST) 

(Zahn, 1971), relative neighborhood graphs (Toussaint, 1980), and Gabriel Graphs 

(Urquhart, 1982), have been applied to present a set of patterns in order to detect the 

clusters. For example, Zahn’s algorithm consists of the following steps: 1) Create the 

MST for the entire set of N patterns.  2) Determine the inconsistent edges. 3) Delete the 

inconsistent edges from MST. 4) The remaining components are our clusters. 

This algorithm can be applied recursively on the resulting components to determine 

new clusters. The heart of this algorithm lies in the definition of inconsistency. Zahn 

(1971) presents several criteria for inconsistency. An edge is inconsistent if its weight is 

much larger than the average of all other nearby edge weights. Other definitions of 

inconsistency are dependent on either the ratio between, or the standard deviation in 

which an edge weight differs from the average of nearby edge weights.  
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2.2.1.3  Nearest Neighbor Method 

Since the distance matrix gives us an intuition of a cluster, nearest-neighbor 

distances can be used as the core of a clustering method. In this method every pattern is 

assigned to the same cluster as its nearest neighbor. An iterative procedure was proposed 

by Lu and Fu (1978) where each unlabeled pattern is assigned to the cluster of its nearest 

labeled neighbor pattern, provided the distance to that labeled neighbor is below a 

threshold. The process continues until all patterns are labeled or no additional labeling 

can occur. This algorithm partitions a set of {x1, x2, …, xn} patterns into a set of k clusters 

{C1, C2, …, Ck}. The user should specify a threshold r, which determines the maximum 

acceptable nearest neighbor distance. The steps of this algorithm are described in Jain & 

Dubes (1988). The number of clusters k which are generated is a function of the 

parameter r. As the value of r is increased the number of clusters k is decreased.. 

2.2.1.4  Mixture density clustering 

The mixture resolving method assumes that the patterns are drawn from a particular 

distribution, and the goal is to identify the parameters of that distribution. Usually it is 

assumed that the individual components of the target partition are the mixture of a 

Gaussian distribution, and thus the parameters of the individual Gaussians are to be 

estimated (Jain et al., 1999). There are traditional approaches to use a maximum 

likelihood estimate of the parameter vectors for the component densities (Jain & Dubes, 

1988). Dempster et al. (1977) proposed a general framework for maximum likelihood 

using the Expectation Maximization (EM) algorithm to estimate the parameters for 

missing data problems. The EM algorithm widely employed to estimate maximum 
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likelihood estimation in in-complete data problems where there are missing data 

(McLachlan & Krishnan, 1997).  

The EM algorithm is an iterative method for learning a probabilistic categorization 

model from unlabeled data. In other words, the parameters of the component densities are 

unknown and EM algorithm aims to estimate them from the patterns. The EM algorithm 

initially assumes random assignment of examples to categories. Then an initial 

probabilistic model is learned by estimating model parameters from this randomly 

labeled data. We then iterate over the following two steps until convergence: 

 Expectation (E-step): Rescore every pattern given the current model, and 

probabilistically re-label the patterns based on these posterior probability estimates. 

 Maximization (M-step): Re-estimate the model parameters from the probabilistically 

re-labeled data. 

A practical description of this algorithm has been provided in Mitchell (1997).  

2.2.1.5  Mode Seeking  

One of the simplest ways to determine the modes in a dataset is to construct a 

histogram by portioning the pattern space into k non-overlapping regions. Regions with 

relatively high pattern frequency counts are the modes or cluster centers. In non-

parametric density estimation, the clustering procedure searches for bins with large 

counts in a multidimensional histogram of the input patterns (Jain & Dubes, 1988). The 

regions of pattern space in which the patterns are the densest would represent the 

partition components. The regions that include fewer numbers of patterns separate the 

clusters.  
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As with other clustering methods, there are benefits and drawbacks.  The advantage 

of the density estimation method is that it does not require knowing the number of 

clusters and their prior probabilities. The disadvantage of this approach is that the process 

of looking for the peaks and valleys in the histogram is difficult in more than a few 

dimensions and requires the user to identify the valleys in histograms for splitting 

interactively.  

2.2.1.6  k-medoids  

Instead of taking the mean value of the data points in a cluster, the k-medoids 

method represents a cluster with an actual data point that is the closest to the center of 

gravity of that cluster. Thus, the k-medoids method is less sensitive to noise and outliers 

than the k-means and the EM algorithms. This, however, requires a longer computational 

time. To determine which objects are good representatives of clusters, the k-medoids 

algorithm follows a cost function that dynamically evaluates any non-center data point 

against other existing data points. 

2.2.1.6.1 Partitioning Around Medoids (PAM) 

PAM (Kaufman & Rousseeuw, 1990) is one of the first k-medoids clustering 

algorithms which first selects the initial k cluster centers randomly within a data set of N 

objects. For every k cluster centers, PAM examines all non-center (N – k) objects and 

tries to replace each of the centers with one of the (N – k) objects that would reduce the 

square error the most. PAM works well when the number of data points is small. 

However, PAM is very costly, because for every k × (N – k) pairs PAM examines the (N 
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– k) data points to compute the cost function. Therefore, the total complexity is O(k × (N 

– k)2 ).  

2.2.1.6.2  CLARA 

Because of the complexity inherent in PAM, an enhanced version of PAM was 

developed for use in large data sets. CLARA (Clustering LARge Applications) is a 

sampling-based method that was developed by Kaufman & Rousseeuw (1990). CLARA 

selects a small portion of data to represent all data points therein. It selects the medoids 

from these samples using PAM. The cost function is computed using the whole data set. 

The efficiency of CLARA depends on the sample size, S. CLARA searches for the best k-

medoids among the sample of the data set. For more efficient results, CLARA draws 

multiple samples from the data set, runs PAM on each sample and returns the best 

clustering. The complexity of each iteration becomes O(k × S2 + k × (N – k)) where S is 

the sample size, k is the number of clusters, and N is the number of data objects.  It is 

important to note, when comparing this complexity with that of the standard PAM, the 

major distinction lies in the power of N – k, the largest value within the expression. 

2.2.1.6.3  CLARANS 

CLARANS (Clustering Large Applications based upon RANdomized Search) was 

proposed by Ng and Han (1994) to improve the quality and scalability of CLARA. This 

algorithm tries to find a better solution by randomly picking one of the k centers and 

replacing it with another randomly chosen object from the remaining objects. The goal of 

CLARANS is not to find the best set of data points that represent the cluster centers. 

Instead, it trades accuracy for efficiency and tries to find the local optimum. The 
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randomized procedure applied by CLARANS is the strong point of this algorithm. Ng 

and Han (1994) have shown that CLARANS outperforms the PAM and CLARA 

algorithms, however, the computational complexity has been reported to be 

approximately O(N2) (Han et al., 2001). The clustering quality is highly dependent upon 

the sampling method employed. Ester et al. (1995) improved the performance of 

CLARANS using special clustering methods, such as R*-trees.  

2.2.1.7 Other partitional methods for large data sets 

The main drawback of the CLARA and CLARANS algorithms is their requirement 

to hold the entire data set in the main memory. In general, large data mining applications 

do not allow the entire data set to be stored in the main memory, so clustering algorithms 

that can handle this situation are required. Some approaches were proposed to cluster the 

data from such sets that we explain two of them as follows. 

1. Divide and conquer approach. The entire data set is stored in a secondary 

memory. The stored data is divided into p subsets. Each subset is clustered 

separately into k clusters. One or more representative samples from each of these 

clusters are stored individually.  In the final step, all these p subset clusters are 

merged into k clusters to obtain a clustering of the entire set. This method can be 

extended to any number of levels (subsets); more subsets are necessary if the 

main memory size is small and the data set is very large (Murty and Krishna, 

1980). The drawback of this algorithm is that it works well only when the points 

in each subset are realistically homogenous, e.g. in image data sets (Jain et al., 

1999). 
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2. Incremental clustering. In this method the entire pattern matrix is stored in a 

secondary location from which data objects are loaded into main memory one at a 

time and assigned to existing clusters. Only the cluster representatives are stored 

in the main memory. Each new data is allocated to an existing cluster or assigned 

to a new cluster depending on criteria like the distance between the loaded data 

point and the cluster’s representative. This method is naturally non-iterative, thus 

the time complexity requirement is as small as the memory requirement (Jain et 

al., 1999). 

2.2.2   Hierarchical Methods 

Hierarchical methods decompose the given set of data items forming a tree, which is 

called dendrogram. A dendrogram splits the dataset recursively into smaller subsets. A 

dendrogram can be formed in two ways:  

1. The Bottom-up approach, also referred to as the agglomerative approach, starts 

with each object forming a distinct group. It successively merges the groups 

according to some measure, such as the distance between the centers of the 

groups, which continues until all of the groups are merged into one – the top most 

level of hierarchy.  

2. The Top-down approach, also referred to as the divisive approach, starts with all 

the objects in the same cluster. In every successive iteration, a cluster is split into 

smaller groups according to some measure until each object is eventually in one 

cluster, or until a termination condition is met. 

3. Hierarchical methods are popular in biological, social and behavioral systems, 

which often need to construct taxonomies. Due to rapidly increasing data 
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densities, dendrograms are impractical when the number of patterns exceeds a few 

hundred (Jain & Dubes, 1988). As a result, partitional techniques are more 

appropriate in the case of large data sets. The dendrogram can be broken at 

different levels to obtain different clusterings of the data (Jain et al., 1999).  

2.2.2.1  Traditional Linkage Algorithms 

The main steps of hierarchical agglomerative algorithms are as follows: We compute 

the proximity matrix including the distances between each pair of patterns. Each pattern 

is treated as a cluster in the first run. Using the proximity matrix we find the most similar 

pair of clusters and merge these two clusters into one. At this point, the proximity matrix 

is updated to imitate the merge operation. We continue this process until all patterns are 

in one cluster. Based on how the proximity matrix is updated a range of agglomerative 

algorithms can be designed (Jain et al., 1999).  

1.  single-link clustering: The similarity between one cluster and another cluster is 

equal to the greatest similarity between any member of one cluster and any 

member of another cluster. It is important to note that, by “greatest similarity,” a 

smallest distance is implied. 

2.  complete-link clustering: The distance between one cluster and another cluster is 

equal to the greatest distance from any member of one cluster to any member of 

another cluster.  Unlike the single-link algorithm, this is focused on the lowest 

similarity between clusters. 

3.  average-link clustering: The distance between one cluster and another cluster is 

equal to the average distance from any member of one cluster to any member of 

the another cluster.   
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2.2.2.2  BIRCH 

The BIRCH (Balanced Iterative Reducing and Clustering) algorithm (Zhang et al., 

1996) uses a hierarchical data structure, which is referred to as a CF-tree (Clustering-

Feature-Tree) for incremental and dynamic clustering of data objects. The BIRICH 

algorithm represents data points as many small CF-trees and then performs clustering 

with these CF-trees as the objects. A CF is a triplet summarizing information about the 

sub-cluster in the CF-tree; CF = (N, LS, SS) where N denotes the number of objects in the 

sub-cluster, LS is the linear sum of squares of the data points, and SS is the sum of 

squares of the data points. Taken together, these three statistical measurements become 

the object for further pair-wise computation between any two sub-clusters (CF-trees). CF-

trees are height-balanced trees that can be treated as sub-clusters. The BIRCH algorithm 

calls for two input factors to construct the CF-tree: the branching input factor B and 

threshold T. The branching parameter, B, determines the maximum number of child 

nodes for each CF node. The threshold, T, verifies the maximum diameter of the sub-

cluster kept in the node (Han et al, 2001).  

A CF tree is constructed as the data is scanned. Each point is inserted into a CF node 

that is most similar to it. If a node has more than B data points or its diameter exceeds the 

threshold T, BIRCH splits the CF nodes into two. After doing this split, if the parent node 

contains more than the branching factor B, then the parent node is rebuilt as well. The 

step of generating sub-clusters stored in the CF-trees can be viewed as a pre-clustering 

stage that reduces the total number of data to a size that fits in the main memory. The 

BIRCH algorithm performs a known clustering algorithm on the sub-cluster stored in the 

CF-tree. If N is the number of data points, then the computational complexity of the 



 

 57

BIRCH algorithm would be O(N) because it only requires one scan of the data set – 

making it a computationally less expensive clustering method than hierarchical methods. 

Experiments have shown good clustering results for the BIRCH algorithm (Han et al, 

2001). However, similar to many partitional algorithms it does not perform well when the 

clusters are not spherical in shape and also when the clusters have different sizes. This is 

due the fact that this algorithm employs the notion of diameter as a control parameter 

(Han et al, 2001). Clearly, one needs to consider both computational cost and geometrical 

constraints when selecting a clustering algorithm, even though real data sets are often 

difficult to visualize when first encountered. 

2.2.2.3   CURE 

The CURE (Clustering Using REpresentatives) algorithm (Guha et al., 1998) 

integrates different partitional and hierarchical clusters to construct an approach which 

can handle large data sets and overcome the problem of clusters with non-spherical shape 

and non-uniform size. The CURE algorithm is similar to the BIRCH algorithm and 

summarizes the data points into sub-clusters, then merges the sub-clusters that are most 

similar in a bottom-up (agglomerative) style. Instead of using one centroid to represent 

each cluster, the CURE algorithm selects a fixed number of well-scattered data points to 

represent each cluster (Han et al., 2001).  

Once the representative points are selected, they are shrunk towards the gravity 

centers by a shrinking factor α which ranges between 0 and 1. This helps eliminate the 

effects of outliers, which are often far away from the centers and thus usually shrink 

more. After the shrinking step, this algorithm uses an agglomerative hierarchical method 

to perform the actual clustering. The distance between two clusters is the minimum 
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distance between any representative points. Therefore, if α = 1, then this algorithm will 

be a single link algorithm, and if α = 0, then it would be equivalent to a centroid-based 

hierarchical algorithm (Guha & Rastogi, 1998). The algorithm can be summarized as 

follows: 

1. Draw a random sample s from the data set.  

2. Partition the sample, s, into p partitions (each of size |s| / p). 

3. Using the hierarchical clustering method, cluster the objects in each sub-cluster 

(group) into |s| / pq clusters, where q is a positive input parameter.  

4. Eliminate outliers; if a cluster grows too slowly, then eliminate it. 

5. Shrink multiple cluster representatives toward the gravity center by a fraction of 

the shrinking factor α. 

6. Assign each point to its nearest cluster to find a final clustering. 

This algorithm requires one scan of the entire data set. The complexity of the 

algorithm would be O(N) where N is the number of data points. However, the clustering 

result depends on the input parameters |s|, p, and α. Tuning these parameters can be 

difficult and requires some expertise, making this algorithm difficult to recommend (Han 

et al. 2001). 

2.3 Feature Selection and Extraction 

Feature extraction and selection is a very important task in the classification or 

clustering process. Feature selection is the procedure of discovering the most effective 

subset of the original features to use in classification/clustering. Feature extraction is the 

process of transforming the input features to produce new relevant features. Either or 

both of these techniques can be used to obtain an appropriate set of features to use in 
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classification or clustering. Why do we need to use feature selection or extraction? We 

can denote the benefits (Jain, 2000) of feature selection and extraction as follows: 

2.3.1   Minimizing the cost 

In many real world applications, feature measurement is very costly, especially with 

a large sample size. Pei, et al. (1998) presented in the context of a biological pattern 

classification that the most important 8 out of 96 features gives 90% classification 

accuracy. They showed that feature selection has a great potential effect in minimizing 

the cost of extracting features and maintaining good classification results. 

2.3.2   Data Visualization 

For explanatory purposes it is useful to project high dimensional data down to two or 

three dimensions. The main concern is protecting the distance information and 

deployment of the original data in two or three dimensions. The traditional approach in 

data visualization is linear projection. A more convenient choice is projecting the data 

onto a graph (Mori 1998). "Chernoff Faces" project the feature space onto cartoon faces, 

by which one can visualize more than three features (Chernoff, 1973).  

2.3.3   Dimensionality Reduction 

Based on an ideal situation where we have an infinite number of training samples, 

classification would be more accurate when we have more features because generally, 

more features gives more information. Nevertheless, in real applications with finite 

sample sizes, the maximum performance is inversely proportional to the number of 

features (Duda & Heart, 1973).  
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The demand for a large number of samples grows exponentially with the 

dimensionality of the feature space. This is due to the fact that as the dimensionality 

grows, the data objects becomes increasingly sparse in the space it occupies. Therefore, 

for classification, this means that there are not enough sample data to allow for reliable 

assignment of a class to all possible values; and for clustering, the definition of density 

and distance among data objects, which is critical in clustering, becomes less meaningful 

(Duda & Heart, 1973).   

This limitation is referred to as the “curse of dimensionality” (Duda et al., 2001). 

Trunk (1979) has represented the curse of dimensionality problem through an exciting 

and simple example. He considered a 2-class classification problem with equal prior 

probabilities, and a d-dimensional multivariate Gaussian distribution with the identity 

covariance matrix for each class. Trunk showed that the probability of error approaches 

the maximum possible value of 0.5 for this 2-class problem. This study demonstrates that 

one cannot increase the number of features when the parameters for the class-conditional 

density are estimated from a finite number of training samples. Therefore, when the 

training sets are limited, one should try to select a small number of salient features.  

This puts a limitation on non-parametric decision rules such as k-nearest neighbor. 

Therefore it is often desirable to reduce the dimensionality of the space by finding a new 

set of bases for the feature space. 

2.3.4   Feature Selection  

A thorough review of feature selection has been presented in Jain (2000). Jain et al. 

(1997) presented a taxonomy of available feature selection algorithms based on pattern 
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recognition or ANN, sub-optimal or optimal, single solution or multi-solution, and 

deterministic or stochastic.  

What are the criteria for choosing a feature subset? A subset of features might be 

chosen in regards to the following points: 

1. The relevance to the classification result: that is, we remove the irrelevant 

features based on prior knowledge of the classification task. Langley (1994) 

has a useful review on relevance and feature selection. 

2. The correlation with the other features: High correlation among features will 

add no more efficiency to classification (Harrell & Frank, 2001). That is, if 

two features are highly correlated, one of the features is redundant, even 

though it is relevant. 

John et al. (1994) has presented the definitions of Strong Relevance and Weak 

Relevance by considering the correlations among feature samples. Hall and Smith (1998) 

formulated a measure of “Goodness of feature” as follows: 

“Good feature subsets contain features highly correlated (predictive of) with the 

class, yet uncorrelated with (not predictive of) each other.” 

2.3.5   Feature Extraction  

Feature extraction can be either a linear or non-linear transformation of the original 

feature space. Principal Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA) are the most commonly used techniques for feature extraction. PCA is an 

unsupervised technique which is intended for feature extraction, while LDA is 

supervised.  
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The idea of the PCA is to preserve the maximum variance after transformation of the 

original features into new features. The new features are also referred to as “principal 

components” or “factors.” Some factors carry more variance than other, but if we limit 

the total variance preserved after such a transformation to some portion of the original 

variance, we can generally keep a smaller number of features. PCA performs this 

reduction of dimensionality by determining the covariance matrix. After the PCA 

transformation in a d-dimensional feature space the m (m < d) largest eigenvalues of the 

d × d covariance matrix are preserved. That is, the uncorrelated m projections in the 

original feature space with the largest variances are selected as the new features, thus the 

dimensionality reduces from d to m (Duda al et., 2001). 

LDA uses the same idea but in a supervised learning environment. That is, it selects 

the m projections using the criterion that maximizes the inter-class variance while 

minimizing the intra-class variance (Duda al et., 2001).  Due to supervision, LDA is more 

efficient than PCA for feature extraction. 

As explained in PCA, m uncorrelated linear projections are selected as the extracted 

features. Nevertheless, from the statistical point of view, for two random variables that do 

not hold normal distribution, uncorrelated between each other does not necessarily lead to 

independent between each other. Therefore, a novel feature extraction technique, 

Independent Component Analysis (ICA) has been proposed to handle the non-Gaussian 

distribution data sets (Comon, 1994). Karhunen (1997) gave an simple example when the 

axes found by ICA is different than those found by PCA for two features uniformly 

distributed inside a parallelogram.  
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2.4  Summary 

A body of literature was briefly explained which deals with the different problems 

involved in data mining for performing classification and clustering upon a web-based 

educational data. The major clustering and classification methods are briefly explained, 

along with the concepts, benefits, and methods for feature selection and extraction. In the 

next chapter, we design and implement a series of pattern classifiers in order to compare 

their performance for a data set from the LON-CAPA system. This experiment provides 

an opportunity to study how classification methods could be put into practice for future 

web-based educational systems.  
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Chapter 3 Data Representation and Assessment 

Tools in LON-CAPA 

This chapter provides information about the structure of LON-CAPA data namely: 

its data retrieval process, how we provide assessment tools in LON-CAPA on many 

aspects of teaching and learning process. Our ability to detect, to understand, and to 

address student difficulties is highly dependent on the capabilities of the tool.  Feedback 

from numerous sources has considerably improved the educational materials, which is a 

continuing task.  

3.1 Data Acquisition and Extracting the Features 

3.1.1   Preprocessing student database 

Preprocessing and finding the useful student data and segmenting may be a difficult 

task. As mentioned earlier, LON-CAPA has two kinds of large data sets: 1) Educational 

resources such as web pages, demonstrations, simulations, and individualized problems 

designed for use on homework assignments, quizzes, and examinations; 2) Information 

about users, who create, modify, assess, or use these resources.  

The original data are stored with escape sequence codes as shown in Figure 3.1: 
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1007070627:msul1:1007070573%3a%2fres%2fadm%2fpages%2fgrds%2egif%3aminaeibi%3amsu%26100707
0573%3a%2fres%2fadm%2fpages%2fstat%2egif%3aminaeibi%3amsu%261007070574%3amsu%2fmmp%2flabq
uiz%2flabquiz%2esequence___1___msu%2fmmp%2flabquiz%2fnewclass%2ehtml%3aminaeibi%3amsu%261
007070589%3amsu%2fmmp%2flabquiz%2flabquiz%2esequence___5___msu%2fmmp%2flabquiz%2fproblems
%2fquiz2part2%2eproblem%3aminaeibi%3amsu%261007070606%3a%2fadm%2fflip%3aminaeibi%3amsu%26
1007070620%3a%2fadm%2fflip%3aminaeibi%3amsu%261007070627%3a%2fres%2fadm%2fpages%2fs%2egif
%3aminaeibi%3amsu%261007070627%3a%2fadm%2flogout%3aminaeibi%3amsu 
 

Figure  3.1  A sample of stored data in escape sequence code 

To sense the data we use the following Perl script function as shown in Figure 3.2 

 my $str; my $line;  
open (LOG ,$file); 
while ($line =<LOG>) { 
   my ($dumptime,$host,$entry)=split(/\:/,$line); 
   my $str = unescape($entry); 
   my ($time,$url,$usr,$domain,$store,$dummy)=split(/\:/,$str); 
   my $string = escape($store); 
   foreach(split(/\&/,$string)){ 
       print "$time $url $usr domain \n"; 
   } 
} 
 
sub unescape { 
 my $str=shift; 
 $str =~ s/%([a-fA-F0-9][a-fA-F0-9])/pack("C",hex($1) )/eg; 
 return $str; 
} 

Figure  3.2  Perl scrip code to retrieve stored data  

After passing the data from this filter we have the following results as shown in 

Figure 3.3: 

1007070573 /res/adm/pages/grds.gif minaeibi /res/adm/pages/stat.gif 
1007670091 /res/adm/pages/grds.gif minaeibi /adm/flip 
1007676278 
msu/mmp/labquiz/labquiz.sequence___2___msu/mmp/labquiz/problems/quiz1part1.problem  
1007743917 /adm/logout minaeibi 
1008203043 msu/mmp/labquiz/labquiz.sequence___1___msu/mmp/labquiz/newclass.html minaeibi 
1008202939 /adm/evaluate minaeibi /adm/evaluate 
1008203046 /res/adm/pages/g.gif minaeibi /adm/evaluate 
1008202926 /adm/evaluate minaeibi 
 

Figure  3.3   A sample of retrieved data from activity log 

The student data restored from .db files from a student directory and fetched into a 

hash table. The special hash keys “keys”, “version” and “timestamp” were obtained from 

the hash. The version will be equal to the total number of versions of the data that have 

been stored. The timestamp attribute is the UNIX time the data was stored. keys is 

available in every historical section to list which keys were added or changed at a specific 
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historical revision of a hash. We extract some of the features from a structured homework 

data, which is stored as particular URL’s.  The structure is shown in figure 3.4. 

resource.partid.opendate  #unix time of when the local machine should let the 
                     #student in 
resource.partid.duedate   #unix time of when the local machine should stop 
                     #accepting answers 
resource.partid.answerdate  #unix time of when the local machine should 
                      #provide the correct answer to the student 
resource.partid.weight     # points the problem is worth 
resource.partid.maxtries   # maximum number of attempts the student can have 
resource.partid.tol # lots of possibilities here 
                    # percentage, range (inclusive and exclusive), 
             # variable name, etc 
                    # 3% 
                    # 0.5 
                    # .05+ 
                    # 3%+ 
                    # 0.5+,.005 
resource.partid.sig  # one or two comma sepearted integers, specifying the 
                     # number of significatn figures a student must use 
resource.partid.feedback # at least a single bit (yes/no) may go with a 
                         # bitmask in the future, controls whether or not 
                         # a problem should say "correct" or not 
resource.partid.solved # if not set, problem yet to be viewed 
                # incorrect_attempted == incorrect and attempted 
                # correct_by_student == correct by student work 
                # correct_by_override == correct, instructor override 
                # incorrect_by_override == incorrect, instructor override 
                # excused == excused, problem no longer counts for student 
                # '' (empty) == not attempted 
                # ungraded_attempted == an ungraded answer has been 
                                          sumbitted and stored 
resource.partid.tries  # positive integer of number of unsuccessful attempts 
                # made, malformed answers don't count if feedback is 
                # on 
resource.partid.awarded  # float between 0 and 1, percentage of 
                  # resource.weight that the stundent earned. 
resource.partid.responseid.submissons 
                     # the student submitted string for the part.response 
resource.partid.responseid.awarddetail 
                     # list of all of the results of grading the submissions 
                     # in detailed form of the specific failure 
    # Possible values: 
                     # EXACT_ANS, APPROX_ANS : student is correct 
                     # NO_RESPONSE : student submitted no response 
                     # MISSING_ANSWER : student submitted some but not 
                     #                   all parts of a response 
                     # WANTED_NUMERIC : expected a numeric answer and 
                     #                   didn't get one 
    # SIG_FAIL : incorrect number of Significant Figures 
                     # UNIT_FAIL : incorrect unit 
                     # UNIT_NOTNEEDED : Submitted a unit when one shouldn't 
                     # NO_UNIT : needed a unit but none was submitted 
    # BAD_FORMULA : syntax error in submitted formula 
                     # INCORRECT : answer was wrong 
                     # SUBMITTED : submission wasn't graded 

Figure  3.4    Structure of stored data in activity log and student data base 

For example, the result of solving homework problem by students could be extracted 

from resource.partid.solved, the total number of the students for solving the 
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problem could be extracted from resource.partid.tries, and so forth. One of the 

difficult phases to data mining in the LON-CAPA system is gathering the student and 

course data, which are distributed in several locations. Finding the relevant data and 

segmentation phase is complicated as well.  

3.1.2  Preprocessing Activity Log 

LON-CAPA records and dynamically organizes a vast amount of information on 

students' interaction with and understanding of these materials. Since LON-CAPA logs 

every activity of every student who has used online educational resources and their 

recorded paths, the activity.log usually grows faster when students have more access to 

the educational resources. A sample of different types of data, which are logged in 

activity.log after a preprocessing phase, is shown in figure 3.5. 

 
144) 1010955846: studentX --> /adm/navmaps eb. This information is stored in an 
“activity.log” which is located in a course’s directory. The data stored in the 
activity.log includes user name, time and resource URL.  
145) 1010955205: studentX --> /res/msu/mmp/kap14/picts/beta_eqn.gif  
147) 1010955988: studentX --> /adm/navmaps  
148) 1010955998: studentX --> msu/mmp/kap14/kap14.sequence___5___msu/mmp/kap14/cd396.htm  
149) 1010955999: studentX --> /res/msu/mmp/kap14/picts/velocity_eqn3.gif  
150) 1010956000: studentX --> /res/msu/mmp/kap14/picts/time_eqn.gif  
151) 1010954609: studentX --> /res/adm/pages/grds.gif  
152) 1010954611: studentX --> /res/msu/mmp/wordproc.gif  
153) 1010954626: studentX --> /res/adm/pages/i.gif  
154) 1010955717: studentX --> msu/mmp/kap14/kap14.sequence___1___msu/mmp/kap14/cd392.htm  
155) 1010955717: studentX --> /res/msu/mmp/kap14/picts/backsoun.gif  
156) 1010955920: studentX --> msu/mmp/kap14/kap14.sequence___3___msu/mmp/kap14/cd394.htm  
157) 1010955921: studentX --> /res/msu/mmp/gifs/demo.gif  
163) 1010955754: studentX --> msu/mmp/kap14/kap14.sequence___2___msu/mmp/kap14/cd393.htm  
164) 1010955756: studentX --> /res/msu/mmp/kap14/picts/asound.jpg  
166) 1010955999: studentX --> /res/msu/mmp/gifs2/example.gif  
173) 1010955687: studentX --> /res/adm/pages/u.gif  
174) 1010955688: studentX --> /res/adm/pages/e.gif  
175) 1010956528: studentX --> 
msu/mmp/kap14/kap14.sequence___33___msu/mmp/kap14/problems/cd418a.problem  
176) 1010956536: studentX --> 
msu/mmp/kap14/kap14.sequence___33___msu/mmp/kap14/problems/cd418a.problem  
178) 1010956536: studentX --> 
msu/mmp/kap14/kap14.sequence___33___msu/mmp/kap14/problems/cd418a.problem  
  

Figure  3.5  A sample of extracted Activity.log data 
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3.1.3  Extractable Features 

An essential step to perform classification is selecting the features used for 

classification. The following features are examples of those stored by the LON-CAPA 

system:  

• Total number of correct answers.  

• Getting the problem right on the first try.  

• Number of attempts before correct answer is derived. 

• Total time that passed from the first attempt, until the correct solution was 

demonstrated, regardless of the time spent logged in to the system. Also, the time 

at which the student got the problem correct relative to the due date.  

• Total time spent on the problem regardless of whether they got the correct answer 

or not. Total time that passed from the first attempt through subsequent attempts 

until the last submission was demonstrated. 

• Participating in the communication mechanisms, versus those working alone. 

LON-CAPA provides online interaction both with other students and with the 

instructor.  

• Reading the supporting material before attempting homework vs. attempting the 

homework first and then reading up on it. 

• Submitting a lot of attempts in a short amount of time without looking up material 

in between, versus those giving it one try, reading explanatory/supportive 

material, submitting another one, and so forth. 

• Giving up on a problem versus students who continued trying up to the deadline. 
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• Time of the first log on (beginning of assignment, middle of the week, last 

minute) correlated with the number of submissions or number of solved problems.  

These features enable LON-CAPA to provide many assessments tools for instructors as it 

will be explained in the next section. 

3.2 Feedback to the instructor from online homework 

LON-CAPA has enabled instructors to efficiently create and distribute a wide variety 

of educational materials, assignments, assessments, etc. These include numerous types of 

formative conceptual and algorithmic exercises for which prompt feedback and assistance 

can be provided to students as they work on assigned tasks. This section presents recent 

developments that allow rapid interpretation of such data in identifying students' 

misconceptions and other areas of difficulty, so that concurrent or timely corrective 

action can be taken. This information also facilitates detailed studies of the educational 

resources used and can lead to redesign of both the materials and the course.  

3.2.1 Feedback tools 

While several meta-analyses of the effects of assessment with immediate feedback to 

the student on their learning are positive (Mason & Bruning, 2003; Azevedo & Bernard 

1995), the range of effect size is considerable (Bonham et al., 2001), and can even be 

negative (Mason & Bruning, 2003; Bransford et al., 2000; Kluger & DeNisi, 1996; 

Kluger & DeNisi, 1998). Even within our own model systems CAPA, LectureOnline, and 

LON-CAPA, when used just for homework, a range of partly contradictory observations 

were made (Kotas, 2000; Pascarella, 2004). The timely feedback is crucial for ensuring 

effective use. 
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As it has been mentioned earlier LON-CAPA do record all information transmitted 

to and from the student. That large amount of data, especially in large courses, is much 

too voluminous for the faculty to interpret and use without considerable pre-processing. 

We discuss functions that make that vast amount of data useful in a timely fashion. The 

instructor can then give students useful feedback, either promptly enough that student can 

benefit while still working on current task, or at a later date to clarify misconceptions and 

address lack of understanding. A preliminary report on some of this work was presented 

in Albertelli et al., (2002).  

LON-CAPA outperforms many web-based education systems in three important 

aspects relevant to the current discussion.  

1. The first is its ability to individualize problems, both algorithmic numerical 

exercises as well as problems that are qualitative and conceptual so that 

numbers, options, images, etc. differ from student to student. (Kashy et al., 

1995).  

2. The second is in the tools provided that allow instructor to collaborate in the 

creation and sharing of content in a fast and efficient manner, both within and 

across institutions, thus implementing the initial goals of the WWW3.  

3. And the third is its one-source multiple target capabilities: that is, its ability 

to automatically transform one educational resource, for example a numerical 

or conceptual homework question, into a format suitable for multiple uses.  

 

                                                 

3 See http://www.w3.org/History/19921103-hypertext/hypertext/WWW/Proposal.html and also 
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/DesignIssues/Multiuser.html 
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3.2.2  Student Evaluation 

An important task of the feedback tools for the instructor is to help identify the 

source of difficulties and the misconceptions students have about a topic. There are 

basically three ways to look at such homework data: by student, by problem, or cross-

cutting (per student, per problem). 

The amount of data gathered from large enrollment courses (200-400 students) with 

over 200 randomizing homework problems, each of them allowing multiple attempts, can 

be overwhelming. Figure 3.6 shows just a small excerpt of the homework performance in 

an introductory physics course, students in the rows, problems in the columns, each 

character representing one online homework problem for one student. A number shown is 

the number of attempts it took that particular student to get that particular problem correct 

(“*” means more than nine attempts), “.” denotes an unsolved problem, blank an un-

attempted problem.  This view is particularly useful ahead of the problem deadline, 

where columns with a large number of dots or blank spaces indicate problems that the 

students have difficulties with. 
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1..9: correct by student in 1..9 submissions     *: correct by student in more than 9 submissions  
+: correct by override        -: incorrect by override  
.: incorrect attempted                                                      #: ungraded attempted  
‘ ‘: not attempted       x: excused 

Figure  3.6   A small excerpt of the performance overview for a small 
introductory physics class 

We extract from student data some reports of the current educational situation of 

every student as shown in table 3.1.  A ‘Y’ shows that the student has solved the problem 

and an ‘N’ shows a failure.  A ‘-‘ denotes an un-attempted problem. The numbers in the 

right column show the total number of submissions of the student in solving the 

corresponding problems. 
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Table  3.1 A sample of a student homework results and submissions 

 

For a per-student view, each of the items in the table in Figure 3.6 is clickable and 

shows both the students’ version of the problem (since each is different), and their 

previous attempts. Figure 3.7 is an example of this view, and indicates that in the 

presence of a medium between the charges, the student was convinced that the force 

would increase, but also that this statement was the one he was most unsure about: His 

first answer was that the force would double; no additional feedback except “incorrect” 

was provided by the system. In his next attempt, he would change his answer on only this 

one statement (indicating that he was convinced of his other answers) to “four times the 

force” – however, only ten seconds passed between the attempts, showing that he was 

merely guessing by which factor the force increased.  
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 Figure  3.7  Single-student view of a problem 

The per-problem view Figure 3.8 shows which statements were answered 

correctly course-wide on the first and on the second attempt, respectively, the graphs on 

the right which other options the students chose if the statement was answered 

incorrectly. Clearly, students have the most difficulty with the concept of how a medium 

acts between charges, with the absolute majority believing the force would increase, and 

about 20% of the students believing that the medium has no influence – this should be 

dealt with again in class. 
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Figure  3.8   Compiled student responses to a problem 

The simplest function of the statistics tools in the system is to quickly identify areas 

of student difficulties. This is done by looking at the number of submissions students 

require in reaching a correct answer, and is especially useful early after an assignment is 

given. A high degree of failure indicates the need for more discussion of the topic before 

the due date, especially since early responders are often the more dedicated and capable 

students in a course. Sometimes a high degree of failure has been the result of some 

ambiguity in wording or, mostly in newly authored problem resources, the result of errors 

in their code. Difficulty is then ‘sky high’. Quick detection allows correction of the 

resource, often before most students have begun the assignment. Figure 3.9 shows a plot 

of the ratio of number of submissions to number of correct responses for 17 problems, 
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from a weekly assignment before it was due. About 15% of the 400 students in an 

introductory physics course had submitted part or most of their assignment.  

 
Figure  3.9   One Early Measure of a Degree of Difficulty  

The data of Figure 3.9 is also available as a table which also lists the number of 

students who have submissions on each problem. Figure 3.9 shows that five of the 

questions are rather challenging, each requiring more than 4 submissions per success on 

average. Problem 1 requires a double integral in polar coordinates to calculate a center of 

mass. Problem 14 is a qualitative conceptual question with six parts and where it is more 

likely that one part or another will be missed. Note that incorrect use of a calculator or 

incorrect order of operation in a formula would not be detected in Figure 3.9 because of 

their relatively low occurrence. Note also that an error in the unit of the answer or in the 

formatting of an answer is not counted as a submission. In those instances, students re-

enter their data with proper format and units, an important skill that students soon acquire 

without penalty. 
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3.2.3 Conceptual Problems 

An important task of the feedback tools for the instructor is to help identify the 

source of difficulty in numerical algorithmic questions, but it also allows for the 

identification of misconceptions students may have on qualitative questions. Student 

responses to two qualitative exercises, one from physics and the second from vector 

math, illustrate the way that the analysis tool detects difficulties and their source, specific 

misconceptions. The physics question is Problem 14 from assignment 8 (Figure 3.12), 

which as indicated above, had five days before it was due. As shown in Figure 3.9 that 

problem averaged at that time slightly more than 4 submissions per successful solution. 

There were 50 correct solutions as a result of 208 submissions by 74 students. The order 

in which the six statements are presented varies among students. Each statement is 

selected randomly from one of the six concept groups.  Each concept group focuses on a 

particular aspect in the question.  Success rate on each concept for the initial submission 

is shown in Figure 3.10. 
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Figure  3.10  Success (%) in Initial Submission for Selecting the Correct Answer 

to Each of Six ‘Concept’ Statements 

While concept ‘3’ is quite clearly the most misunderstood, there is also a large error 

rate for concepts ‘2’, 4’ and ‘6’. About one third of the students succeeded on their first 

submission for all six concepts groups and thus earned credit on their first submission.  

This can be seen by looking at the decreasing number of submissions from Figure 3.10 to 

Figure 3.11. Note the pattern in the initial submissions persists in subsequent submissions 

with only minor changes.  
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Figure  3.11   Success Rate on  Second and Third Submissions for Answers to 

Each of Six  ‘Concept’  Statements 

The text of the problem corresponding to the data in Figures 3.10 and 3.11 is shown 

in Figure 3.12. 

 
 Figure  3.12  Randomly Labeled Conceptual Physics Problem 
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The labels in the problem are randomly permuted. In the version of the problem 

shown in Figure 3.12 the first question is to compare tension Tz to Ty. It is the most 

commonly missed statement, corresponding to concept ‘3’ of Figures 3.10 and 3.11. The 

incorrect answer given by over 90% of the students is that the two tensions are equal, 

which would be the answer for a pulley with negligible mass. That had been the case in 

an assignment two weeks earlier. This error was addressed by discussion in lecture and 

by a demonstration showing the motion for a massive pulley with unequal masses. This 

quickly impacted the subsequent response pattern. Note that solutions to the versions of 

the problems use as illustrations are given at the end of this section. (Solution to Figure 

3.12: 1-less, 2-greater, 3-less, 4-equal, 5-true, 6-greater)  

The next example is shown in Figure 3.13. It deals with the addition of two vectors. 

The vectors represent the possible orientations and rowing speed of a boat and the 

velocity of water. Here also the labeling is randomized so both the image and the text 

vary for different students. Students are encouraged to discuss and collaborate, but cannot 

simply copy from each other (Solution to Figure 3.13: 1-less, 2-greater, 3-less, 4-equal, 5-

greater). 
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  Figure  3.13  Vector Addition Concept Problem 

The upper graphic of Figure 3.14 shows once again the success rate of 350 students 

on their initial submission, but this time in more detail showing all the possible 

statements. There are two variations for the first three concepts and four for the last two. 

The lower graph in Figure 3.14 illustrates the distribution of incorrect choices for the 

282 students who did not get earn credit for the problem on their first submission. The 

stacked bars show the way each statement was answered incorrectly. This data gives 

support to the ‘concept group’ method, not only in the degree of difficulty within a group 

as reflected by the Percent Correct in Figure 3.14, but also by the consistency of the 

misconception as seen from the Incorrect Choice distribution. Statements 3 and 4 in 
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Figure 3.14 present ‘Concept 2’, that greater transverse velocities result in a shorter 

crossing time, with the vectors in reverse order. Statement 3 reads ‘Time to row across 

for K is .... for C’, and statement 4 is ‘Time to row across for C is .... for K’. Inspection of 

the graph indicates the students made the same error, assuming the time to row across for 

K is less than the time to row across for C, regardless of the manner in which the question 

was asked.  Few students believed the quantities to be equal.   In concept group 3, 

statements 7, 8, 9 and 10, “equal to” is predominantly selected instead of ‘greater than’ or 

‘less than’ as appropriate.   This detailed feedback makes it easier for the instructor to 

provide help so that students discover their misconceptions. Finally, as in the previously 

discussed numerical example, particular hints can be displayed, triggered by the response 

selected for a statement or by triggered by a combination of responses for several 

statements. 
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 Figure  3.14  Upper Section: Success Rate for Each Possible Statement. Lower 

Section: Relative distribution of Incorrect Choices, with Dark Gray as “greater 
than”, Light Gray as “Less Than” and Clear as “Equal to” 

3.2.4   Homework and Examination Problem Evaluation  

The same source code which is used to present problems for on-line homework can 

also generate them for an on-line examination or for a printed version suitable for a 

proctored bubble sheet examination which is later machine scored (Albertelli et al., 

2003). 

LON-CAPA can provide statistical information about every problem in a table (see 

Table 3.2), which is called “Stats Table”. Every part of a multi-part problem is 

distinguished as a separate problem. The multi-instance problem is also considered 

separately, because a particular problem or one part of it might be used in different 

homework sets. Finally, a table is created which includes all computed information from 
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all students, sorted according to the problem order. In this step, LON-CAPA has provided 

the following statistical information: 

1. #Stdnts:  Total number of students who take a look at the problem.(Let 

#Stdnts is equal to n) 

2. Tries:  Total number of submissions to solve the problem (∑
=

n

i
ix

1
where ix denote 

a student try). 

3. Mod:  Mode, maximum number of submissions for solving the problem. 

4. Mean:  Average number of the submissions. x = ∑
=

n

i
ix

n 1

1  

5. #YES:  Number of students solved the problem correctly. 

6. #yes: Number of students solved the problem by override.  

Sometimes, a student gets a correct answer after talking with the instructor. This type 

of correct answer is called “corrected by override". 

7. %Wrng:  Percentage of students tried to solve the problem but still incorrect.  

( )
n

yesYESn )#(#*100 +−  

 

8. S.D.:  Standard Deviation of the students’ submissions.  

∑
=

−
−

n

i
i xx

n 1

2)(
1

1  
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Table  3.2  Statistics table includes general statistics of every problem of the 
course (Homework Set 1) 

Homework Set 
Order #Stdnts Tries Mod Mean #YES %Wrng DoDiff S.D. Skew. D.F. 

1st 
D.F. 
2nd

Calculator Skills 256 267 3 1.04 256 0.0 0.04 0.2 5.7 0.03 0.00
Numbers 256 414 17 1.62 255 0.4 0.38 1.6 5.7 0.11 0.02
Speed 256 698 13 2.73 255 0.4 0.63 2.2 1.9 0.06 0.02
Perimeter 256 388 7 1.52 255 0.4 0.34 0.9 2.4 -0.00 0.02
Reduce a 
Fraction 256 315 4 1.23 256 0.0 0.19 0.5 2.3 0.01 0.00

Calculating with 
Fractions 256 393 7 1.54 255 0.4 0.35 0.9 2.0 0.15 0.02

Area of a Balloon 254 601 12 2.37 247 2.8 0.59 1.8 1.8 -0.05 -0.02
Volume of a 
Balloon 252 565 11 2.24 243 3.6 0.57 1.9 2.0 -0.06 -0.03

Units 256 1116 20 4.36 246 3.9 0.78 4.2 1.9 0.18 0.03
Numerical Value 
of Fraction 256 268 4 1.05 256 0.0 0.04 0.2 3.4 0.01 .00 
Vector versus 
Scalar 254 749 11 2.95 251 1.2 0.66 2.2 1.1 -0.05 -0.05

Adding Vectors 253 1026 20 4.06 250 1.2 0.76 3.6 1.8 0.14 0.00
Proximity 249 663 19 2.66 239 3.6 0.64 2.3 2.8 0.11 -0.10
  

 

9. Skew.:  Skewness of the students’ submissions.  
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10. DoDiff:  Degree of Difficulty of the problem.  

( )
∑ =

+
− n

i ix
yesYES

1

##1  

Clearly, the Degree of Difficulty is always between 0 and 1. This is a useful factor 

for an instructor to determine whether a problem is difficult, and the degree of this 

difficulty. Thus, DoDiff of each problem is saved in its meta data. 
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11. DoDisc: Degree of Discrimination4 (or Discrimination Factor) is a standard 

for evaluating how much a problem discriminates between the upper and the 

lower students.  First, all of the students are sorted according to a criterion. Then, 

27% of upper students and 27% lower students are selected from the sorted 

students applying the mentioned criterion. Finally we obtain the Discrimination 

Factor from the following difference: 

Applied a criterion in 27% upper students - Applied the same Criterion in 27% lower 

students. 

Discrimination Factor is a number in interval [-1,1]. If this number is close to 1, it 

shows that only upper students have solved this problem. If it is close to 0 it shows that 

the upper students and the lower students are approximately the same in solving the 

problem. If this number is negative, it shows that the lower students have more success in 

solving the problem, and thus this problem is very poor in discriminating the upper and 

lower students. 

We compute the Discrimination Factor from two criteria: 
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These measures can also be employed for evaluating resources used in examinations. 

Examinations as assessment tools are most useful when the content includes a range of 

difficulty from fairly basic to rather challenging problems. An individual problem within 

                                                 

4  This name has been given by administration office of Michigan State University for evaluating the 
exams’ problem. Here we expanded this expression to homework problems as well. 
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an examination can be given a difficulty index (DoDiff) simply by examining the class 

performance on that problem. Table 3.3 shows an analysis for the first two mid-term 

examinations in Spring 2004. 

Table  3.3   Analysis of Examination Problems (N=393) DoDiff = Difficulty Index  
DoDisc = Discrimination Index 

DoDiff DoDisc DoDiff DoDisc Problem Number 
Exam 1 Exam 1 Exam 2 Exam 2 

1 0.2 0.4 0.7 0.24 
2 0.16 0.31 0.13 0.2 
3 0.4 0.4 0.19 0.31 
4 0.44 0.57 0.41 0.57 
5 0.32 0.38 0.52 0.11 
6 0 0 0.18 0.26 
7 0.23 0.33 0.7 0.36 
8 0.21 0.24 0.57 0.35 
9 0.36 0.63 0.55 0.58 
10 0.4 0.59 0.87 0.14 

 

We can see that Exam 1 was on the average somewhat less difficult than Exam 2. 

Problem 10 in Exam 2 has DoDisc=0.14 and DoDiff=0.87, indicating it was difficult for 

all students.  The students did not understand the concepts involved well enough to 

differentiate this problem from a similar problem they had seen earlier. In Exam 1, 

problems 3, 4, 9, and 10 are not too difficult and nicely discriminating. One striking entry 

in Table 3.3 is for problem 6 in Exam 1. There both DoDiff and DoDisc are 0. No 

difficulty and no discrimination together imply a faulty problem. As a result of this 

situation, a request was submitted to modify LON-CAPA so that in the future an 

instructor will be warned of such a circumstance. 

The distribution of scores on homework assignments differs considerably from that 

on examinations. This is clearly seen in Figure 3.15. 
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Figure  3.15  Grades on the first seven homework assignments and on the first 

two midterm examinations 

The correlation of homework and examinations is moderate (r=0.43). Students with a 

good exam score tend to score high on homework but the reverse is not as true. This can 

be seen in the 3-D plot of the Figure 3.15 data in Figure 3.16. Homework grades peak 

near 100% as motivated students tend to repeat problems until a correct solution is 

obtained.  

Students also often interpret a high homework grade as indication that they are doing 

well in the course. To counter that misconception, a readily accessible on-line grade 

extrapolator provides students a review of their performance to date in the various 

components of the class, quizzes, mid term exams, and homework. They enter their own 

estimate of their future performance for the remainder of the semester, as well as for the 

final examination. This tool then projects a final grade, thus keeping students aware of 

their progress. As a result of feedback on students’ work, those doing very poorly can be 

identified quite early (Minaei et al., 2003; Thoennessen et al., 1999). 
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Figure  3.16   Homework vs. Exam Scores. The highest bin has 18 students. 

3.3 Summary 

LON-CAPA provides instructors or course coordinators full access to the students’ 

educational records. With this access, they are able to evaluate the problems presented in 

the course after the students have used the educational materials, through some statistical 

reports. LON-CAPA also provides a quick review of students’ submissions for every 

problem in a course.  The instructor may monitor the number of submissions of every 

student in any homework set and its problems. The total numbers of solved problems in a 

homework set as compared with the total number of solved problems in a course are 

represented for every individual student.  

LON-CAPA reports a large volume of statistical information for every problem e.g., 

“total number of students who open the problem,” “total number of submissions for the 

problem,” “maximum number of submissions for the problem,” “average number of 
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submissions per problem,” “number of students solving the problem correctly,” etc. This 

information can be used to evaluate course problems as well as the students.  More details 

can be found in Albertelli et al. (2002) and Hall et al. (2004). Aside from these 

evaluations, another valuable use of data will be discussed in the next chapter. 
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Chapter 4  Predicting Student Performance 

The objective in this chapter is to predict the students’ final grades based on the 

features which are extracted from their (and others’) homework data. We design, 

implement, and evaluate a series of pattern classifiers with various parameters in order to 

compare their performance in a real data set from the LON-CAPA system. This 

experiment provides an opportunity to study how pattern recognition and classification 

theory could be put into practice based on the logged data in LON-CAPA. The error rate 

of the decision rules is tested on one of the LON-CAPA data sets in order to compare the 

performance accuracy of each experiment. Results of individual classifiers, and their 

combination, as well as error estimates, are presented.  

The problem is whether we can find the good features for classifying students! If so, 

we would be able to identify a predictor for any individual student after doing a couple of 

homework sets. With this information, we would be able to help a student use the 

resources better.   

The difficult phase of the experiment is properly pre-processing and preparing the 

data for classification. Some Perl modules were developed to extract and segment the 

data from the logged database and represent the useful data in some statistical tables and 

graphical charts. More details of these tasks have been explained in a part of previous 

chapter which is dedicated for data acquisition and data representation.  
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4.1 Data set and Class Labels 

As the first step in our study, in order to have an experiment in student classification, 

we selected the student and course data of a LON-CAPA course, PHY183 (Physics for 

Scientists and Engineers I), which was held at MSU in spring semester 2002. Then we 

extend this study to more courses. This course integrated 12 homework sets including 

184 problems. About 261 students used LON-CAPA for this course. Some of the students 

dropped the course after doing a couple of homework sets, so they do not have any final 

grades. After removing those students, 227 valid samples remained. You can see the 

grade distribution of the students in the following chart (Figure 4.1) 
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Figure  4.1   Graph of distribution of grades in course PHY183  SS02 
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We can group the students regarding their final grades in several ways, 3 of which 

are:  

1. The 9 possible class labels can be the same as students’ grades, as shown in Table 

4.1. 

2. We can group them into three classes, “high” representing grades from 3.5 to 4.0, 

“middle” representing grades from 2.5 to 3, and “low” representing grades less 

than 2.5, as shown in table 4.2. 

3. We can also categorize students with one of two class labels: “Passed” for grades 

above 2.0, and ”Failed” for grades less than or equal to 2.0, as shown in table 4.3. 

Table  4.1.     9-Class labels regarding students’ grades in course PHY183_ SS02 

Class Grade    # of  Student     Percentage 
1 0.0            2           0.9% 
2 0.5            0           0.0% 
3 1.0           10          4.4% 
4 1.5           28         12.4% 
5 2.0           23         10.1% 
6 2.5           43         18.9% 
7 3.0           52         22.9% 
8 3.5           41        18.0% 
9 4.0           28        12.4% 

Table  4.2.   3-Class labels regarding students’ grades in course PHY183  SS02 

Class Grade Student # Percentage 
High Grade >= 3.5 69 30.40% 

Middle 2.0 < Grade < 3.5 95 41.80% 
Low Grade <= 2.0 63 27.80% 

Table  4.3.    2-class labels regarding students’ grades in course PHY183  SS02 

Class Grade  Student # Percentage 
Passed Grade > 2.0 164 72.2% 
Failed Grade <= 2.0 63 27.80% 
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We can predict that the error rate in the first class grouping should be higher than the 

others, because the sample size among the 9-Classes differs considerably.  

The present classification experiment focuses on the first six extracted students’ 

features based on the PHY183 Spring 2002 class data.   

1. Total number of correct answers. (Success rate) 

2. Getting the problem right on the first try, vs. those with high number of 

submissions. (Success at the first try) 

3. Total number of attempts before final answer is derived 

4. Total time that passed from the first attempt, until the correct solution was 

demonstrated, regardless of the time spent logged in to the system. Also, the 

time at which the student got the problem correct relative to the due date. 

Usually better students get the homework completed earlier.  

5. Total time spent on the problem regardless of whether they got the correct 

answer or not. Total time that passed from the first attempt through 

subsequent attempts until the last submission was demonstrated. 

6. Participating in the communication mechanisms, vs. those working alone. 

LON-CAPA provides online interaction both with other students and with the 

instructor.  
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4.2 Classifiers 

Pattern recognition has a wide variety of applications in many different fields; 

therefore it is not possible to come up with a single classifier that can give optimal results 

in each case.  The optimal classifier in every case is highly dependent on the problem 

domain. In practice, one might come across a case where no single classifier can perform 

at an acceptable level of accuracy. In such cases it would be better to pool the results of 

different classifiers to achieve the optimal accuracy. Every classifier operates well on 

different aspects of the training or test feature vector. As a result, assuming appropriate 

conditions, combining multiple classifiers may improve classification performance when 

compared with any single classifier.  

4.2.1   Non-tree based classifiers 

We compare some popular non-parametric pattern classifiers and a single parametric 

pattern classifier according to their error estimates. Six different classifiers over one of 

the LON-CAPA data sets are compared. The classifiers used include Quadratic Bayesian 

classifier, 1-nearest neighbor (1-NN), k-nearest neighbor (k-NN), Parzen-window, multi-

layer perceptron (MLP), and Decision Tree.5  These classifiers are some of the most 

common classifiers used in practical classification problems. After some preprocessing 

operations were made on the data set, the error rate of each classifier is reported. Finally, 

to improve performance, a combination of classifiers is presented. 

                                                 

5 The first five classifiers are coded in MATLABTM 6.0, and for the decision tree classifiers we have use 
some available software packages such as C5.0, CART, QUEST, CRUISE. We will discuss the Decision 
Tree-based software in the next section. In this section we deal with non-tree classifiers. 
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4.2.1.1 Combination of Multiple Classifiers (CMC) 

In combining multiple classifiers we seek to improve classification accuracy. There 

are different ways one can think of combining classifiers: 

 The simplest way is to find the overall error rate of the classifiers and choose 

the one which has the lowest error rate for the given data set. This is called an 

offline CMC. This may not really seem to be a CMC; however, in general, it 

has a better performance than individual classifiers. The output of this 

combination will simply be the best performance in each column in Figures 

4.3 and 4.5. 

 The second method, which is called online CMC, uses all the classifiers 

followed by a vote. The class getting maximum votes from the individual 

classifiers will be assigned to the test sample. This method seems, intuitively, 

to be better than the previous one. However, when we actually tried this on 

some cases of our data set, the results were not more accurate than the best 

result from the previous method. Therefore, we changed the rule of majority 

vote from “getting more than 50% of the votes” to “getting more than 75% of 

the votes”. We then noticed a significant improvement over offline CMC. 

Table 4.6 shows the actual performance of the individual classifier and online 

CMC over our data set. 

 Woods et al. (1995) suggest a third method, which is called DSC-LA 

(Dynamic Selection of Classifiers based on the Local Accuracy estimates). 

This method takes a particular test sample, investigates the local 
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neighborhood of that sample using all the individual classifiers and the one 

which performs best is chosen for the decision-making6. 

Besides CMC, we also show the outcomes for an “Oracle” which chooses the correct 

results if any of the classifiers classified correctly, as Woods et al. (1995) has presented 

in their article.  

4.2.1.2   Normalization 

Having assumed in Bayesian and Parzen-window classifiers that the features are 

normally distributed, it is necessary that the data for each feature be normalized. This 

ensures that each feature has the same weight in the decision process. Assuming that the 

given data is conforms to a Gaussian distribution; this normalization is performed using 

the mean and standard deviation of the training data. In order to normalize the training 

data, it is necessary first to calculate the sample mean, µ , and the standard deviation, σ , 

of each feature (column) in the data set, and then normalize the data using the following 

equation:  

σ
µ−

= i
i

xx  (4.1) 

 

This ensures that each feature of the training data set has a normal distribution with a 

mean of zero and a standard deviation of one. In addition, the kNN method requires 

normalization of all features into the same range. However, we should be cautious in 

using the normalization before considering its effect on classifiers’ performances. Table 

                                                 

6  We have not implemented this method in this proposal yet. 
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4.4 shows a comparison of Error Rate and Standard Deviation, using the classifiers in 

both normalized and un-normalized data in the case of 3 classes. 

Table  4.4   Comparing Error Rate of classifiers with and without normalization 
in the case of 3 classes 

3-Classes With Normalization Without Normalization 
Classifier Error rate S.D Error rate S. D. 

Bayes 0.4924 0.0747 0.5528 0.0374 

1NN 0.5220 0.0344 0.5864 0.041 
KNN 0.5144 0.0436 0.5856 0.0491 

Parzen 0.5096 0.0408 0.728 0 
MLP 0.4524 0.0285 0.624 0 
CMC 0.2976 0.0399 0.3872 0.0346 
Oracle 0.1088 0.0323 0.1648 0.0224 

 

Thus, we tried the classifiers with and without normalization. Table 4.4 clearly 

shows a significant improvement in most classification results after normalization. Here 

we have two findings: 

1. The Parzen-Window classifier and MLP do not work properly without normalizing 

the data. Therefore, we have to normalize data when using these two classifiers. 

2. Decision tree classifiers do not show any improvement on their classification 

performance after normalization, so we ignore it in using tree classifiers. We will 

study the decision tree classifier later, though the Decision Tree classifiers’ results 

are not introduced in Table 4.4. 

4.2.1.3   Comparing 2-fold and 10-fold Cross-Validation 

In k-fold cross-validation, we divide the data into k subsets of approximately equal 

size. We train the data k times, each time leaving out one of the subsets from training, but 
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using only the omitted subset to compute the error threshold of interest. If k equals the 

sample size, this is called "Leave-One-Out" cross-validation. (Duda et al. 2001; Kohavi, 

1995). Leave-One-Out cross-validation provides an almost unbiased estimate of true 

accuracy, though at a significant computational cost.  In this proposal both 2-fold and 10-

fold cross validation are used.  

In 2-fold cross-validation, the order of the observations, both training and test, are 

randomized before every trial of every classifier. Next, every sample is divided amongst 

the test and training data, with 50% going to training, and the other 50% going to test. 

This means that testing is completely independent, as no data or information is shared 

between the two sets. At this point, we classify7 the test sets after the training phase of all 

the classifiers. We repeat this random cross validation ten times for all classifiers.  

In 10-fold cross-validation, the available data (here, the 227 students’ data) are 

divided into 10 blocks containing roughly equal numbers of cases and class-value 

distributions. For each block (10% of data) in turn, a model is developed using the data in 

the remaining blocks (90% of data, the training set), and then it is evaluated on the cases 

in the hold-out block (the test set). When all the tests (10 tests) are completed, each 

sample in the data will have been used to test the model exactly once. The average 

performance on the tests is then used to predict the true accuracy of the model developed 

from all the data. For k-values of 10 or more, this estimate is more reliable and is much 

more accurate than a re-substitution estimate. 

                                                 

7 All the code was written in MATLABTM 6.5 
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Table  4.5 Comparing Error Rate of classifiers 2-fold and 10-fold Cross-
Validation in the case of 3 classes 

3-Classes 10-fold Cross-Validation 2-fold Cross-Validation 
Classifier Error Rate S.D. Error Rate S.D. 

Bayes 0.5 0.0899 0.5536 0.0219 
1NN 0.4957 0.0686 0.5832 0.0555 
KNN 0.5174 0.0806 0.576 0.0377 

Parzen 0.5391 0.085 0.4992 0.036 
MLP 0.4304 0.0806 0.4512 0.0346 
CMC 0.313 0.084 0.3224 0.0354 

Oracle 0.1957 0.0552 0.1456 0.0462 
 

Table 4.5 shows comparison of Error Rate and Standard Deviation using the 

classifiers in both 2-fold and 10-fold cross-validation in the case of the 3-Classes. You 

can see that the 10-fold cross-validation in relation to individual classifier has slightly 

more accurate than 2-fold cross validation, but in relation to combination of classifiers 

(CMC) there is no a significant difference. Nonetheless, we selected 10-fold cross 

validation for error estimation in this proposal. 

4.2.1.4  Results, Error Estimation 

The experimental results were averaged and are presented in the charts below. They 

show the effect of selecting the data randomly on the average error rate.  The average 

error rate and its standard deviation, which is associated with each classifier, is shown in 

the tables as well as the chart. Each table summarizes the results of all the classifiers on 

our data set.  
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Figure  4.2: Comparing Error Rate of classifiers with 10-fold Cross-Validation 

in the case of 2-Classes 

The standard deviation of error rate shows the variance of the error rate during cross 

validation. The error rate is measured in each round of cross validation by: 

examples test ofnumber  Total
 examples test of fiedmissclassi Total roundeach in  RateError =  

After 10 rounds, the average error rate and its standard deviation are computed and 

then plotted. This metric was chosen due to its ease of computation and intuitive nature. 

Figure 4.2 and 4.3 show the comparison of classifiers’ error rate when we classify the 

students into two categories, “Passed” and “Failed”. The best performance is for kNN 

with 82% accuracy, and the worst classifier is Parzen-window with 75% accuracy. CMC 

in the case of 2-Classes classification has 87% accuracy. 
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LON-CAPA, Classifiers Camparison  on PHY183 SS02, 
10-fold Cross-Validation, 2 Classes

0

0.05

0.1

0.15

0.2

0.25

0.3

Average Error Rate 0.2364 0.2318 0.1773 0.25 0.2045 0.1318 0.0818

Standard Deviation 0.0469 0.0895 0.0725 0.089 0.0719 0.0693 0.0559

Bayes 1NN KNN Parzen MLP CMC Oracle

 
Figure  4.3: Table and graph to compare Classifiers’ Error Rate, 10-fold CV in 

the case of 2-Classes 

It is noticeable that these processes were done after we had found the optimal k in the 

kNN algorithm and after we had tuned the parameters in MLP and after we had found the 

optimal h in the Parzen-window algorithm. Finding the best k for kNN is not difficult, 

and its performance is the best in the case of 2-Classes, though is not as good as the other 

classifiers in the case of 3-Classes, as is shown in Figure 4.4.  
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Figure  4.4: Comparing Error Rate of classifiers with 10-fold Cross-Validation in the 

case of 3-Classes 

Working with Parzen-window classifier is not as easy because finding the best width 

for its window is not straitforward. The MLP classifier is the most difficult classifier to 

work with. Many parameters have to be set properly to make it work optimally. For 

example, after many trials and errors we found that the structure of the network in the 

case of 3-classes, the 4-3-3 (one hidden layer with 3 neurons in hidden layer) works 

better, and in the case of 2-classes, if we have 2 hidden layer with 2 or 4 neurons in each 

hidden layer, would lead to a better performance. There is no algorithm to set the number 

of epochs and learning rates in the MLP. However, sometimes MLP has the best 

performance in our data set. As shown in the Table 4.6, MLP is slightly better than the 

other individual classifier. In the case of 9-Classes we could not set the MLP to work 
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properly, so we have not brought the result of MLP classifier into the final result in table 

4.6. 

LON-CAPA, Classifiers Comparison on PHY183 data set, 
10-fold Cross-Validation, 3 classes

0

0.1

0.2

0.3

0.4

0.5

0.6

Average Error Rate 0.5143 0.4952 0.4952 0.519 0.4905 0.2905 0.1619

Standard Deviation 0.1266 0.0751 0.0602 0.1064 0.1078 0.0853 0.0875

Bayes 1NN KNN Parzen MLP CMC Oracle

 
Figure  4.5  Comparing Classifiers’ Error Rate, 10-fold CV in the case of 3-Classes 

As predicted before, the error rate in the case of 9-Classes is much higher than in 

other cases. The final results of the five classifiers and their combination in the case of 2-

Classes, 3-Classes, and 9-Classes are shown in Table 4.6. 

In the case of 9-Classes, 1-NN works better than the other classifiers. Final results in 

Table 4.6 show that CMC is the most accurate classifier compared to individual 

classifiers. In the case of 2-Classes it improved by 5%, in the case of 3-Classes it 

improved by 20%, and in the case of 9-Classes it improved by 22%, all in relation to the 

best individual classifiers in the corresponding cases. 
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Table  4.6: Comparing the Performance of classifiers, in all cases: 2-Classes, 3-
Classess, and 9-Classes, Using 10-fold Cross-Validation in all cases. 

 Error Rate 
Classifier 2-Classes 3-Classes 9-Classes 

Bayes 0.2364 0.5143 0.77 
1NN 0.2318 0.4952 0.71 
KNN 0.1773 0.4952 0.725 

Parzen 0.25 0.519 0.795 
MLP 0.2045 0.4905 - 
CMC 0.1318 0.2905 0.49 

Oracle 0.0818 0.1619 - 
 

One important finding is that when our individual classifiers are working well and 

each has a high level of accuracy; the benefit of combining classifiers is small. Thus, 

CMC has little improvement in classification performance while it has a significant 

improvement in accuracy when we have weak learner8 classifiers. 

We tried to improve the classification efficiency by stratifying the problems in 

relation to their degree of difficulty.  By choosing some specific conceptual subsets of the 

students’ data, we did not achieve a significant increase in accuracy with this parameter. 

In the next section, we explain the results of decision tree classifiers on our data set, 

while also discussing the relative importance of student-features and the correlation of 

these features with category labels. 

4.2.2   Decision Tree-based software 

Decision trees have proved to be valuable tools for the description, classification and 

generalization of data. Many users find decision trees easy to use and understand. As a 

result, users more easily trust decision tree models than they do "black box" models, such 

                                                 

8 “Weak learner” means that the classifier has accuracy only slightly better than chance (Duda et al., 2001) 
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as models produced by neural networks. Many tools and software have been developed to 

implement decision tree classification. Lim et al. (2000) has an insightful study about 

comparison of prediction accuracy, complexity, and training time of thirty-three 

classification algorithms; twenty-two decision trees, nine statistical and two neural 

network algorithms are compared on thirty-two data sets in terms of classification 

accuracy, training time, and (in the case of trees) number of leaves. In this proposal we 

used C5.0, CART, QUEST, and CRUISE software to test tree-based classification. Some 

statistical software is employed for multiple linear regression on our data set. First we 

have a brief view of the capabilities, features and requirements of these software 

packages. Then we gather some of the results and compare their accuracy to non-tree 

based classifiers. 

4.2.2.1   C5.0 

Decision tree learning algorithms, for example, ID3, C5.0 and ASSISTANT (Cestnik 

et al., 1987), search a completely expressive hypothesis space and are used to 

approximate discrete valued target functions represented by a decision tree. In our 

experiments the C5.0 inductive learning decision tree algorithm was used. This is a 

revised version9 of C4.5 and ID3 (Quinlan 1986, 1993) and includes a number of 

additional features. For example, the Boosting option causes a number of classifiers to be 

constructed - when a case is classified, all of these classifiers are consulted before making 

a decision. Boosting will often give a higher predictive accuracy at the expense of 
                                                 

9 It is the commercial version of the C4.5 decision tree algorithm developed by Ross Quinlan. See5/C5.0 
classifiers are expressed as decision trees or sets of if-then rules. RuleQuest provides C source code so that 
classifiers constructed by See5/C5.0 can be embedded in your own systems.  

 



 

 107

increased classifier construction time. For our experiments, however, data set boosting 

was not found to improve prediction accuracy.  

When a continuous feature is tested in a decision tree, there are branches 

corresponding to the conditions: “Feature Value ≤  Threshold” and “Feature Value > 

Threshold,” for some threshold chosen by C5.0. As a result, small movements in the 

feature value near the threshold can change the branch taken from the test. There have 

been many methods proposed to deal with continuous features (Quinlan, 1988; Chan et 

al., 1992; Ching et al., 1995). An option available in C5.0 uses fuzzy thresholds to soften 

this knife-edge behavior for decision trees by constructing an interval close to the 

threshold. This interval plays the role of margin in neural network algorithms. Within this 

interval, both branches of the tree are explored and the results combined to give a 

predicted class.  

Decision trees constructed by C5.0 are post pruned before being presented to the 

user. The “Pruning Certainty Factor” governs the extent of this simplification. A higher 

value produces more elaborate decision trees and rule sets, while a lower value causes 

more extensive simplification. In our experiment a certainty factor of 25% was used. If 

we change the certainty factor, we may obtain different results. 

C5.0 needs four types of files for generating the decision tree for a given data set, out 

of which two files are optional: 

The first file is the .names file. It describes the attributes and classes. The first line of 

the .names file gives the classes, either by naming a discrete attribute (the target attribute) 

that contains the class value, or by listing them explicitly. The attributes are then defined 
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in the order that they will be given for each case. The attributes can be either explicitly or 

implicitly defined. The value of an explicitly defined attribute is given directly in the 

data. The value of an implicitly-defined attribute is specified by a formula. In our case, 

data attributes are explicitly defined.  

The second file is the .data file. It provides information on the training cases from 

which C5.0 will extract patterns. The entry for each case consists of one or more lines 

that give the values for all explicitly defined attributes. The '?' is used to denote a value 

that is missing or unknown. Our data set had no missing features. Also, 'N/A' denotes a 

value that is not applicable for a particular case.  

The third file used by C5.0 consists of new test cases on which the classifier can be 

evaluated and is the .test file. This file is optional and, if used, has exactly the same 

format as the .data file. We gave a .test file for our data set.  

The last file is the .costs file. In applications with differential misclassification costs, 

it is sometimes desirable to see what affect costs have on the construction of the 

classifier. In our case all misclassification costs were the same so this option was not 

implemented.   

After the program was executed on the PHY183 SS02 data set we obtained results 

for both the training and testing data. A confusion matrix was generated in order to show 

the misclassifications.  The confusion matrices for three types of classification in our data 

set that are, 2-Classes, 3-Classes and 9-Classes are in Appendix A. You can also find 

some rule set samples resulted from the rule-set option in C5.0, as well as a part sample 

of the tree produced by C5.0 in Appendix A. 
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 Using 10-fold cross validation we got 79.3% accuracy in 2-Classes, 56.8% 

accuracy in 3-Classes, 25.6% accuracy in 9-Classes.  

One of the important and exciting experiments of C5.0 is to use a training, and test 

set; and thus at least a 10-fold cross-validation to get a desirable result. For example, in 

the case of 3-Classes, we might get approximately 75% accuracy in the training set, while 

boosting might improve accuracy up to 90% or 95%. Unfortunately, this is overfitting, or 

overtraning, and so we therefore would not be able to generalize these results or this 

complex training model to test the unseen data because of overfitting. 

4.2.2.2  CART 

CART10 uses an exhaustive search method to identify useful tree structures of data. It 

can be applied to any data set and can proceed without parameter setting. Comparing 

CART analyses with stepwise logistic regressions or discriminant analysis, CART 

typically performs better on the learning sample. Listed below are some technical aspects 

of CART:  

CART is a nonparametric procedure and does not require specification of a 

functional form. CART uses a stepwise method to determine splitting rules, and thus no 

advance selection of variables is necessary, although certain variables such as ID 

numbers and reformulations of the dependent variable should be excluded from the 

analysis. Also, CART’s performance can be enhanced by proper feature selection and 

                                                 

10 CART(tm) (Classification And Regression Trees) is a data mining tool exclusively licensed to Salford 
Systems (http://www.salford-systems.com). CART is the implementation of the original program by 
Breiman, Friedman, Olshen, and Stone. We used CART version 5.02 under windows for our classification. 
Using CART we are able to get many interesting textual and graphical reports, some of which are presented 
in Appendix A. It is noticeable that CART does not use any description files to work with. Data could be 
read as a text file or any popular database or spreadsheet. 
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creation of predictor variables. There is no need to experiment with monotone 

transformations of the independent variables, such as logarithms, square roots or squares. 

In CART, creating such variables will not affect the resulting trees unless linear 

combination splits are used. Outliers among the independent variables generally do not 

affect CART because splits usually occur at non-outlier values. Outliers in the dependent 

variable are often separated into nodes where they no longer affect the rest of the tree. 

CART does not require any preprocessing of the data. In particular, continuous variables 

do not have to be recoded into discrete variable versions prior to analysis. While the 

CART default is to split nodes on single variables, it will optionally use linear 

combinations of non-categorical variables. For each split in the tree, CART develops 

alternative splits (surrogates), which can be used to classify an object when the primary 

splitting variable is missing. Thus, CART can be used effectively with data that has a 

large fraction of missing values. 

One of the advantages of CART is presenting the importance of independent 

variables in predicting both classification mode and regression mode. Each variable in the 

CART tree has an importance score based on how often and with what significance it 

served as primary or surrogate splitter throughout the tree. The scores reflect the 

contribution each variable makes in classifying or predicting the target variable, with the 

contribution stemming from both the variable’s role in primary splits and its role as a 

surrogate splitter (Dan and Colla, 1998). In Table 4.7 and 4.8, the importance of the six 

features (independent variables) are scored in the case of 2-classes with Gini splitting 

criterion and 3-classes with Entropy splitting criterion respectively. 
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Table  4.7   Variable (feature) Importance in 2-Classes Using Gini Criterion 

Variable   
TOTCORR 100.00 ||||||||||||||||||||||||||||||||||||||||||

TRIES 56.32 ||||||||||||||||||||||| 
FIRSTCRR 4.58 | 
TOTTIME 0.91  

SLVDTIME 0.83  
DISCUSS 0.00  

Table  4.8    Variable (feature) Importance in 2-Classes, Using Entropy Criterion 

Variable    
TOTCORR 100.00 ||||||||||||||||||||||||||||||||||||||||||

TRIES 58.61 |||||||||||||||||||||||| 
FIRSTCRR 27.70 ||||||||||| 
SLVDTIME 24.60 |||||||||| 
TOTTIME 24.47 |||||||||| 
DISCUSS 9.21 ||| 

 

The results in Tables 4.7 and 4.8 show that the most important feature (which has the 

highest correlation with the predicted variables) is the “Total number of Correct 

answers,” and the least useful variable is the “Number of Discussions.” If we consider the 

economical aspect of computation cost, we can remove the less important features. 

 
In our experiment, we used both 10-fold Cross-Validation and Leave-One-Out 

method. We found that the error rates in training sets are not improved in the case of 2-

Classes and 3-Classes, but the misclassifications in the test sets are improved when we 

switch from 10-fold Cross-Validation to Leave-One-Out. Yet, in the case of 9-Classes 

both training and testing sets are improved significantly when switching occurs, as is 

shown in Table 4.9 and 4.10.  How can we interpret improvement variation between 

classes?  
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Table  4.9: Comparing the Error Rate in CART, using 10-fold Cross-Validation 
in learning and testing set. 

Splitting Criterion 2-Classes 3-Classes 9-Classes 
 Training Testing Training Testing Training Testing 

Gini 17.2% 19.4% 35.2% 48.0% 66.0% 74.5% 
Symmetric Gini 17.2% 19.4% 35.2% 48.0% 66.0% 74.5% 

Entropy 18.9% 19.8% 37.9% 52.0% 68.7% 76.2% 
Twoing 17.2% 19.4% 31.3% 47.6% 54.6% 75.3% 

Ordered Twoing 17.2% 20.7% 31.7% 48.0% 68.3% 74.9% 

Table  4.10: Comparing the Error Rate in CART, using Leave-One-Out method 
in learning and testing test. 

Splitting Criterion 2-Classes 3-Classes 9-Classes 
 Training Testing Training Testing Training Testing 

Gini 17.2% 18.5% 36.6% 41.0% 46.7% 66.9% 
Symmetric Gini 17.2% 18.5% 36.6% 41.0% 46.7% 66.9% 

Entropy 17.2% 18.9% 35.2% 41.4% 48.0% 69.6% 
Twoing 17.2% 18.5% 38.3% 40.1% 47.1% 68.7% 

Ordered Twoing 18.9% 19.8% 35.2% 40.4% 33.9% 70.9% 
 

Discussion of improvement variation: 

In the case of 2-Classes, there is no improvement in the training phase and a slight 

(1%) improvement in the test phase. It shows that we can have a more reliable model 

with the Leave-One-Out method for student classification. It shows that the model we 

obtained in training phase is approximately complete.    

In the case of 3-Classes, when we switch from 10-fold to Leave-One-Out the results 

in the training phase become slightly worse, but we achieve approximately 7.5% 

improvement. It shows that our model was not complete in 10-fold for predicting the 

unseen data. Therefore, it is better to use Leave-One-Out to get a more complete model 

for classifying the students into three categories. 
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In the case of 9-Classes when we switch from 10-fold to Leave-One-Out, the results 

in both training and test sets improve significantly. However, we cannot conclude that 

our new model is complete. This is because the big difference between the results in 

training and testing phase shows that our model is suffering from overfitting. It means 

that our training samples are not enough to construct a complete model for predicting the 

category labels correctly; more data is required to come to an adequate solution. 

After discussing the CART results it is worth noting that by using CART we are able 

to produce many useful textual and graphical reports, some of which are presented in 

Appendix A. In next section we discuss the other decision tree software results. One of 

the advantages of CART is that it does not require any description files; therefore data 

can be read as a text file or any popular database or spreadsheet file format. 

4.2.2.3   QUEST, CRUISE11 

QUEST is a statistical decision tree algorithm for classification and data mining. The 

objective of QUEST is similar to that of the algorithm used in CART and described in 

Breiman, et al. (1984). The advantages of QUEST are its unbiased variable selection 

technique by default, its use of imputation instead of surrogate splits to deal with missing 

values, and its ability to handle categorical predictor variables with many categories. If 

there are no missing values in the data, QUEST can use the CART greedy search 

algorithm to produce a tree with univariate splits.  

                                                 

11 QUEST (Quick, Unbiased and Efficient Statistical Tree) A classification tree restricted to binary splits 
CRUISE (Classification Rule with Unbiased Interaction Selection and Estimation) A classification tree 
that splits each node into two or more sub-nodes. These new software were developed by Wei-Yin Loh at 
the University of Wisconsin-Madison, Shih at University of Taiwan, and Hyunjoong Kim at University of 
Tennessee,. vastly-improved descendant of an older algorithm called FACT.  
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QUEST needs two text input files: 1) Data file: This file contains the training 

samples. Each sample consists of observations on the class (or response or dependent) 

variable and the predictor (or independent) variables. The entries in each sample record 

should be comma or space delimited. Each record can occupy one or more lines in the 

file, but each record must begin on a new line. Record values can be numerical or 

character strings. Categorical variables can be given numerical or character values. 2) 

Description file: This file is used to provide information to the program about the name 

of the data file, the names and the column locations of the variables, and their roles in the 

analysis.  

The following is the description file: 

phy183.dat 

"?" 

column, var, type 
     1  1stGotCrr  n 
     2  TotCorr  n 
     3  AvgTries  n 
     4  TimeCorr  n 
     5  TimeSpent  n 
     6  Discuss  n 
     7  Class2  x 
     8  Class3  d 
     9  Class9  x 
     10  Grade  x 
 
In the first line, we put the name of data file (phy183.dat), and in the second line we 

put the character used to denote missing data (?). In our data set we have no missing data. 

The position (column), name (var) and role (type) of each variable follow, with one line 

for each variable. The following roles for the variables are permitted: “c” stands for 

categorical variable; “d” for class (dependent) variable; only one variable can have the d 

indicator; “n” for a numerical variable; and “x” which indicates that the variable is 

excluded from the analysis. 
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QUEST allows both interactive and batch mode. By default it uses “discriminant 

analysis” as a method for split point selection. It is an unbiased variable selection method 

described in Loh and Shih (1997). However, in advanced mode, the user can select 

“exhaustive search” (Breiman et al., 1984) which is used in CART. The former is the 

default option if the number of classes is more than 2, otherwise the latter is the default 

option. If the latter option is selected, the program will ask for the user to choose the 

splitting criterion including one of the following five methods which are studied in Shih 

(1999): 

1 Likelihood Ratio Gˆ2 

2 Pearson Chiˆ2 

3 Gini 

4 MPI (Mean Posterior Improvement) 

5 Other members of the divergence family  

 

The likelihood criterion is the default option. If instead the CART-style split is used, 

the Gini criterion is the default option. In our case, we selected the fifth method of 

exhaustive search which was optimal regarding the misclassification ratio.  

QUEST asks for the prior for each class. If the priors are to given, the program will 

then ask the user to input the priors. If unequal costs are present (like in this example), 

the priors are altered using the formula in Breiman et al. (1984, pp. 114-115). In our cases 

the prior for each class is estimated based on the class distribution. This asks for the 

misclassification costs. If the costs are to be given, the program will ask the user to input 

the costs. In our cases the misclassification costs are equal. The user can choose either 

split on a single variable or linear combination of variables. We used split on a single 

variable. 
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QUEST also asks for the number of SEs which controls the size of the pruned tree. 

0-SE gives the tree with the smallest cross-validation estimate of misclassification cost or 

error. QUEST enables user to select the value of V in V-fold cross-validation. The larger 

the value of V, the longer running time the program takes to run. 10-fold and 226-fold 

(Leave-One-Out) are used in our cases. 

The classification matrices based on the learning sample and CV procedure are 

reported. Some samples of these reports are shown in Appendix A. You can see a table 

gives the sequence of pruned subtrees. The 3rd column shows the cost complexity value 

for each subtree by using the definition in Breiman et al. (1984, Definition 3.5 p. 66). The 

4th column gives the current or re-substitution cost (error) for each subtree. Another table 

gives the size, estimate of misclassification cost and its standard error for each pruned 

sub-tree. The 2nd column shows the number of terminal nodes. The 3rd column shows 

the mean cross-validation estimate of misclassification cost and the 4th column gives its 

estimated standard error using the approximate formula in Breiman et al. (1984, pp. 306-

309). The tree marked with an “*” is the one with the minimum mean cross-validation 

estimate of misclassification cost (also called the 0-SE tree). The tree based on the mean 

cross-validation estimate of misclassification cost and the number of SEs is marked with 

“**” (See Appendix A). 

QUEST trees are given in outline form suitable for importing into flowchart 

packages like allCLEAR (CLEAR Software, 1996). Alternatively, the trees may be 

outputted in LaTeX code. The public domain macro package pstricks (Goossens, Rahtz 

and Mittelbach, 1997) or TreeTEX (Bruggemann-Klein and Wood, 1988) is needed to 

render the LaTeX trees. 
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CRUISE is also a new statistical decision tree algorithm for classification and data 

mining. It has negligible bias in variable selection. It splits each node into as many sub-

nodes as the number of classes in the response variable It has several ways to deal with 

missing values. It can detect local interactions between pairs of predictor variables. 

CRUISE has most of QUEST capabilities and reports (See Appendix A). We have 

brought the results of tree-based classification with QUEST and the CRUISE into the 

final reporting table (Table 4.11), which includes all tree-based and non-tree based 

classifiers on our data set in the cases of 2-Classes, 3-Classes, and 9-Classes. 
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4.2.3  Final Results without optimization 

The overall results of classifiers’ performance on our data set are shown in the Table 

4.11. Regarding individual classifier, for the case of 2-classes, kNN has the best 

performance with 82.3% accuracy. In the case of 3-classes and 9-classes, CART has the 

best accuracy of about 60% in 3-classes and 43% in 9-Classes. However, considering the 

combination of non-tree-based classifiers, the CMC has the best performance in all three 

cases. That is we got the 86.8% accuracy in the case of 2-Classes, 71% in the case of 3-

Classes, and 51% in the case of 9-Classes. 

Table  4.11: Comparing the Error Rate of all classifiers on PHY183 data set in 
the cases of  2-Classes, 3-Classes, and 9-Classes, using 10-fold cross-validation, 

Without Optimization 

 Error Rate 
Classifier 2-Classes 3-Classes 9-Classes 

C5.0 20.7% 43.2% 74.4% 
CART 18.5% 40.1% 66.9% 

QUEST 19.5% 42.9% 80.0% 
CRUISE 19.0% 45.1% 77.1% 

Tree 
Classifier 

    
Bayes 23.6% 51.4% 77.0% 
1NN 23.2% 49.5% 71.0% 
kNN 17.7% 49.6% 72.5% 

Parzen 25.0% 51.9% 79.5% 
MLP 20.5% 49.1% - 

    

Non-tree 
Classifier 

CMC 13.2% 29.1% 49.0% 
 

So far, we have grouped students using multiple classifiers, comparing their 

prediction accuracy with CMC. In the next section we will study a way to optimize these 

results in order to find more efficient and more accurate classifiers.  
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4.3  Optimizing the prediction accuracy  

We found that a combination of multiple classifiers leads to a significant 

improvement in classification performance. Through weighting the feature vectors using 

a Genetic Algorithm we can optimize the prediction accuracy and get a marked 

improvement over raw classification. We further show that when the number of features 

is few; feature-weighting works better than just feature selection. 

4.3.1  Genetic Algorithms (GAs) 

This learning procedure can be considered a search through a space of data points. A 

genetic algorithm presents a powerful alternative to traditional search techniques. It has 

been inspired by a similar predictive model in nature. Evolution in nature is controlled 

through the following principles: 

Natural Selection: the strongest specimens have the highest chance to survive and 

reproduce, while the weak ones are likely to die before the reproduction stage. 

Reproduction: the fittest specimens recombine their genetic information, thus 

creating new specimens with somewhat new characteristics. 

Mutation leads to random changes in genetic information. 

The success of this “search technique” in nature inspired some researchers to 

propose methods and develop algorithms that could be encoded in computer programs. A 

clear and simple introduction to the discipline of genetic algorithm has been made by 

Goldberg (1989).  To start casting a real problem in a setting where its solution is can be 

obtained through a genetic algorithm, two important steps are taken: encoding the search 

space into chromosomes (a string of binary/real values); and defining a fitness function 
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that plays the role of an evaluation function in a heuristic search. The implementation of  

a chromosome is typically in the form of bit strings. 

4.3.1.1  What is a Simple GA (SGA)? 

The main steps of a GA are reproduction, recombination, and mutation in the 

following algorithm (Michalski et al., 1998): 

1. Construct the initial population as a set of binary strings generated randomly 

or by some pre-specified mechanisms. 

2. Replicate the specimen in the population into a set of survivors by a 

mechanism that ensures that specimens with a higher fitness value have a 

higher chance of survival. 

3. Pair up all the survivors, such that each has a mate. Next specific chunks of 

encoded data are swapped between mates. Mutation arises when a single bit 

flip-flops. 

4. If the fitness function has not improved through several cycles, stop; 

otherwise go to step 2. 

4.3.1.2   Specific use of GAs in pattern classification 

Genetic Algorithms have been shown to be an effective tool to use in data mining 

and pattern recognition (Freitas, 2002; Jain and Zongker, 1997; Falkenauer, 1998; Pei et 

al., 1997; Park and Song, 1998; Michalewicz, 1996; De Jong et al., 1993). An important 

aspect of GAs in a learning context is their use in pattern recognition.  There are two 

different approaches to applying GA in pattern recognition: 
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1. Apply a GA directly as a classifier. Bandyopadhyay and Murthy (1995) 

applied GA to find the decision boundary in N dimensional feature space. 

2. Use a GA as an optimization tool for resetting the parameters in other 

classifiers. Most applications of GAs in pattern recognition optimize some 

parameters in the classification process.  

Many researchers have used GAs in feature selection (Bala et al. 1997; Guerra-

Salcedo and Whitley 1999, Vafaie and De Jong, 1993; Martin-Bautista and Vila, 1999). 

GAs have been applied to find an optimal set of feature weights that improve 

classification accuracy. First, a traditional feature extraction like Principal Component 

Analysis (PCA) is applied, and then a classifier like k-NN is used to calculate the fitness 

function for GA (Seidlecki, 1989; Pei et al., 1998). Combined classifiers are another area 

that GAs have been used to optimize. Kuncheva and Jain (2000) used a GA for selecting 

the features as well as selecting the types of individual classifiers in their design of a 

Classifier Fusion System. GA is also used in selecting the prototypes in the case-based 

classification (Skalak, 1994). 

In this work we focus on the second approach and use a GA to optimize a 

combination of classifiers. Our objective is to predict the students’ final grades based on 

their web-use features, which are extracted from the homework data. We design, 

implement, and evaluate a series of pattern classifiers with various parameters in order to 

compare their performance on a data set from LON-CAPA. Error rates for the individual 

classifiers, their combination and the GA optimized combination are presented.  
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4.3.2 Implementation of a GA to optimize the prediction accuracy 

We use the GAToolBox12 from MATLAB to implement a GA to optimize 

classification performance. Our goal is to find a population of best weights for every 

feature vector, which minimize the classification error rate.  

The feature vector for our predictors are the set of six variables for every student: 

Success rate, Success at the first try, Number of attempts before correct answer is derived, 

the time at which the student got the problem correct relative to the due date, total time 

spent on the problem, and the number of online interactions of the student both with other 

students and with the instructor.  

We randomly initialize a population of six dimensional weight vectors with values 

between 0 and 1, corresponding to the feature vector and experimented with different 

number of population sizes. We obtained good results using a population with 200 

individuals. The GA Toolbox supports binary, integer, real-valued and floating-point 

chromosome representations. Real-valued populations may be initialized using the 

toolbox function crtrp. For example, to create a random population of 6 individuals with 

200 variables each: we define boundaries on the variables in FieldD which is a matrix 

containing the boundaries of each variable of an individual.  

FieldD = [ 0 0 0 0 0 0;  % lower bound 

           1 1 1 1 1 1]; % upper bound 

An initial population created with Chrom = crtrp(200, FieldD), An example is as 

follows: 

 

                                                 

12 Downloaded from http://www.shef.ac.uk/~gaipp/ga-toolbox/ 
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Chrom = 0.23 0.17 0.95 0.38 0.06 0.26  

        0.35 0.09 0.43 0.64 0.20 0.54 

        0.50 0.10 0.09 0.65 0.68 0.46 

        0.21 0.29 0.89 0.48 0.63 0.89 

……………… 

We use the simple genetic algorithm (SGA), which is described by Goldberg (1989).  

4.3.2.1  GA Operators 

The SGA uses common GA operators to find a population of solutions which 

optimize the fitness values. 

4.3.2.1.1   Recombination 

We use “Stochastic Universal Sampling” (Baker, 1987) as our selection method. A 

form of stochastic universal sampling is implemented by obtaining a cumulative sum of 

the fitness vector, FitnV, and generating N equally spaced numbers between 0 and 

sum(FitnV). Thus, only one random number is generated, all the others used being 

equally spaced from that point. The index of the individuals selected is determined by 

comparing the generated numbers with the cumulative sum vector. The probability of an 

individual being selected is then given by  

 

where f(xi) is the fitness of individual xi and F(xi) is the probability of that individual 

being selected. 
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4.3.2.1.2     Crossover 

The crossover operation is not necessarily performed on all strings in the population. 

Instead, it is applied with a probability Px when the pairs are chosen for breeding. We 

select Px = 0.7. There are several functions to make crossover on real-valued matrices. 

One of them is recint, which performs intermediate recombination between pairs of 

individuals in the current population, OldChrom, and returns a new population after 

mating, NewChrom. Each row of OldChrom corresponds to one individual. recint is a 

function only applicable to populations of real-value variables. Intermediate 

recombination combines parent values using the following formula (Muhlenbein and 

Schlierkamp-Voosen, 1993). 

Offspring = parent1 + Alpha × (parent2 – parent1) 

Alpha is a Scaling factor chosen uniformly in the interval [-0.25, 1.25] 

4.3.2.1.3       Mutation 

A further genetic operator, mutation is applied to the new chromosomes, with a set 

probability Pm. Mutation causes the individual genetic representation to be changed 

according to some probabilistic rule. Mutation is generally considered to be a background 

operator that ensures that the probability of searching a particular subspace of the 

problem space is never zero. This has the effect of tending to inhibit the possibility of 

converging to a local optimum, rather than the global optimum. 

There are several functions to make mutation on real-valued population. We used 

mutbga, which takes the real-valued population, OldChrom, mutates each variable with 

given probability and returns the population after mutation, NewChrom = 

mutbga(OldChrom, FieldD, MutOpt) takes the current population, stored in the matrix 
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OldChrom and mutates each variable with probability by addition of small random 

values (size of the mutation step). We considered 1/600 as our mutation rate. The 

mutation of each variable is calculated as follows: 

Mutated Var = Var + MutMx × range × MutOpt(2) × delta 

where delta is an internal matrix which specifies the normalized mutation step size; 

MutMx is an  internal mask table; and MutOpt specifies  the mutation rate and its 

shrinkage during the run. The mutation operator mutbga is able to generate most points 

in the hypercube defined by the variables of the individual and the range of the mutation. 

However, it tests more often near the variable, that is, the probability of small step sizes 

is greater than that of larger step sizes.  

4.3.2.2  Fitness Function 

During the reproduction phase, each individual is assigned a fitness value derived 

from its raw performance measure given by the objective function. This value is used in 

the selection to bias towards more fit individuals. Highly fit individuals, relative to the 

whole population, have a high probability of being selected for mating whereas less fit 

individuals have a correspondingly low probability of being selected. The error rate is 

measured in each round of cross validation by dividing “the total number of misclassified 

examples” into “total number of test examples”. Therefore, our fitness function measures 

the error rate achieved by CMC and our objective would be to maximize this 

performance (minimize the error rate). 
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4.3.3    Experimental Results of GA Optimization  

For GA optimization, we used 200 individuals in our population, running the GA 

over 500 generations. We ran the program 10 times and got the averages, which are 

shown, in Table 4.12. In every run 500×200 times the fitness function is called in which 

we used 10-fold cross validation to measure the average performance of CMC. So every 

classifier is called 3×106 times for the case of 2-classes, 3-classes and 9-classes. Thus, 

the time overhead for fitness evaluation is critical. Since using the MLP in this process 

took about 2 minutes and all other four non-tree classifiers (Bayes, 1NN, 3NN, and 

Parzen window) took only 3 seconds, we omitted the MLP from our classifiers group so 

we could obtain the results in a reasonable time. 

Figures 4.6-4.8 shows the best result of the ten runs over our data set. These figures 

represent the population mean, the best individual at each generation and the best value 

yielded by the run. The results in Table 4.12 represent the mean performance with a two-

tailed t-test with a 95% confidence interval. For the improvement of GA over non-GA 

result, a P-value indicating the probability of the Null-Hypothesis (There is no 

improvement) is also given, showing the significance of the GA optimization. 
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Figure  4.6.  Graph of GA Optimized CMC performance in the case of 2-Classes 

 
Figure  4.7. Graph of GA Optimized CMC performance in the case of 3-Classes 
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Figure  4.8. Graph of GA Optimized CMC performance in the case of 9-Classes 

 

Table  4.12. Comparing the CMC Performance on PHY183 data set  Using GA 
and without GA in the cases of 2-Classes, 3-Classess, and 9-Classes, 95% confidence 

interval. 

 Performance % 
Classifier 2-Classes 3-Classes 9-Classes 

CMC of four Classifiers 
without GA 83.87± 1.73 61.86± 2.16 49.74± 1.86 

GA Optimized CMC, Mean 
individual 94.09± 2.84 72.13± 0.39 62.25± 0.63 

Improvement 10.22± 1.92 10.26± 1.84 12.51± 1.75 

 

All have p<0.000, indicating significant improvement. Therefore, using GA, in all 

the cases, we got more than a 10% mean individual performance improvement and about 

12 to 15% mean individual performance improvement. Figure 4.9 shows the graph of 

average mean individual performance improvement. 
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Figure  4.9. Char t of comparing CMC average performance, using GA and 

without GA. 

Finally, we can examine the individuals (weights) for features by which we obtained 

the improved results. This feature weighting indicates the importance of each feature for 

making the required classification. In most cases the results are similar to Multiple Linear 

Regressions or tree-based software that use statistical methods to measure feature 

importance.  Table 4.13 shows the importance of the six features in the 3-classes case 

using the Entropy splitting criterion. Based on entropy, a statistical property called 

information gain measures how well a given feature separates the training examples in 

relation to their target classes.  Entropy characterizes impurity of an arbitrary collection 

of examples S at a specific node N. In Duda et al. (2001) the impurity of a node N is 

denoted by i(N). 

Entropy(S) = )(log)()( 2 j
j

j PPNi ωω∑−=   
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where )( jP ω  is the fraction of examples at node N that go to category jω . 

Table  4.13. Feature Importance in 3-Classes Using Entropy Criterion 

Feature Importance % 
Total_Correct _Answers 100.00 

Total_Number_of_Submissions 58.61 
First_Got_Correct 27.70 

Time_Spent_to_Solve 24.60 
Total_Time_Spent 24.47 

Communication 9.21 
 

The GA results also show that the “Total number of correct answers” and the “Total 

number of submissions” are the most important features for classification accuracy; both 

are positively correlated to the true class labels. The second column in Table 4.13 shows 

the percentage of feature importance. One important finding is that GAs determine 

optimal weights for features. Using this set of weights we can extract a new set of 

features which significantly improve the prediction accuracy. In other words, this 

resultant set of weights transforms the original features into new salient features. 
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4.4 Extending the work toward more LON-CAPA data sets 

We selected 14 student/course data sets of MSU courses, which used LON-CAPA as 

shown in Table 4.14 and 4.15.  

Table  4.14.   14 of LON-CAPA courses at MSU  

Course Term Title 
ADV 205 SS03 Principles of Advertising 
BS 111 SS02 Biological Science: Cells and Molecules 
BS 111 SS03 Biological Science: Cells and Molecules 
CE 280 SS03 Civil Engineering: Intro Environment Eng. 
FI 414 SS03 Advanced Business Finance (w) 

LBS 271 FS02 Lyman Briggs School: Physics I 
LBS 272 SS03 Lyman Briggs School: Physics II 
MT 204 SS03 Medical Tech.: Mechanisms of Disease 
MT 432 SS03 Clinic Immun. & Immunohematology 
PHY 183 SS02 Physics Scientists & Engineers I 
PHY 183 SS03 Physics Scientists & Engineers I 
PHY 231c SS03 Introductory Physics I 
PHY 232c FS03 Introductory Physics II 
PHY 232 FS03 Introductory Physics II   
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Table  4.15  Characteristics of 14 of MSU courses, which held by LON-CAPA 

Course 
Number 

of 
Students 

Number of
Problems 

Size of  
Activity log 

Size of 
useful data 

Number of 
Transactions

ADV205_SS03 609 773 82.5 MB 12.1 MB 424,481 
BS111_SS02 372 229 361.2 MB 34.1 MB 1,112,394 
BS111_SS03 402 229 367.6 MB 50.2 MB 1,689,656 
CE280_SS03 178 19 6 28.9 MB 3.5 MB 127,779 
FI414_SS03 169 68 16.8 MB 2.2 MB 83,715 

LBS271_FS02 132 174 119.8 MB 18.7 MB 706,700 
LBS272_SS03 102 166 73.9 MB 15.3 MB 585,524 
MT204_SS03 27 150 5.2 MB 0.7 MB 23,741 
MT432_SS03 62 150 20.0 MB 2.4 MB 90,120 

PHY183_SS02 227 184 140.3 MB 21.3 MB 452,342 
PHY183_SS03 306 255 210.1 MB 26.8 MB 889,775 
PHY231c_SS03 99 247 67.2 MB 14.1 MB 536,691 
PHY232c_SS03 83 194 55.1 MB 10.9 MB 412,646 
PHY232_FS03 220 259 138.5 MB 19.7 MB 981,568 
                                 

For example, the third row of the Table 4.16 shows that BS111 (Biological Science: 

Cells and Molecules) was held in spring semester 2003 and contained 229 online 

homework problems, and 402 students used LON-CAPA for this course. The BS111 

course had an activity log with approximately 368 MB. Using some Perl script modules 

for cleansing the data, we found 48 MB of useful data in the BS111 SS03 course. We 

then pulled from these logged data 1,689,656 transactions (interactions between students 

and homework/exam/quiz problems) from which we extracted the following nine features 

(Having revised six features that were explained in 4.1): 

1. Number of attempts before correct answer is derived 

2. Total number of correct answers 

3. Success at the first try 

4. Getting the problem correct on the second try 

5. Getting the problem correct between 3 and 9 tries 
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6. Getting the problem correct with a high number of tries (10 or more tries). 

7. Total time that passed from the first attempt, until the correct solution was 

demonstrated, regardless of the time spent logged in to the system 

8. Total time spent on the problem regardless of whether they got the correct answer 

or not 

9. Participating in the communication mechanisms 

Based on the above extracted features in each course, we classify the students, and 

try to predict for every student to which class he/she belongs. We categorize the students 

with one of two class labels: “Passed” for grades higher than 2.0, and ”Failed” for grades 

less than or equal to 2.0 where the MSU grading system is based on grades from 0.0 to 

4.0. Figure 4.10 shows the grade distribution for the BS111 fall semester 2003. 
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Figure  4.10. LON-CAPA: BS111 SS03, Grades distribution 
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4.4.1 Experimental Results 

Without using GA, the overall results of classification performance on our datasets 

for four classifiers and classification fusion are shown in the Table 4.16. Individual 

classifiers, 1NN and kNN have mostly the best performance. However, the classification 

fusion improved the classification accuracy significantly in all data sets. That is, it 

achieved in average 79% accuracy over the given data sets. 

Table  4.16   Comparing the average performance% of ten runs of classifiers on 
the given datasets using 10-fold cross validation, without GA 

Data sets Bayes 1NN kNN Parzen 
Window

Classification 
Fusion 

ADV 205, 03 55.7 69.9 70.7 55.8 78.2 
BS 111, 02 54.6 67.8 69.6 57.6 74.9 
BS 111, 03 52.6 62.1 55.0 59.7 71.2 
CE 280, 03 66.6 73.6 74.9 65.2 81.4 
FI 414, 03 65.0 76.4 72.3 70.3 82.2 

LBS 271, 02 66.9 75.6 73.8 59.6 79.2 
LBS 272, 03 72.3 70.4 69.6 65.3 77.6 
MT 204, 03 63.4 71.5 68.4 56.4 82.2 
MT 432, 03 67.6 77.6 79.1 59.8 84.0 
PHY 183, 02 73.4 76.8 80.3 65.0 83.9 
PHY 183, 03 59.6 66.5 70.4 54.4 76.6 
PHY 231c, 03 56.7 74.5 72.6 60.9 80.7 
PHY 232c, 03 65.6 71.7 75.6 57.8 81.6 
PHY 232, 03 59.9 73.5 71.4 56.3 79.8 

 

For GA optimization, we used 200 individuals (weight vectors) in our population, 

running the GA over 500 generations. We ran the program 10 times and got the averages, 

which are shown, in Table 4.17. 
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Table  4.17  Comparing the classification fusion performance on given datasets, 
without-GA, using-GA (Mean individual) and improvement, 95% confidence 

interval 

Data sets Without GA GA optimized Improvement 
ADV 205, 03 78.19± 1.34 89.11± 1.23 10.92± 0.94 
BS 111, 02 74.93± 2.12 87.25± 0.93 12.21± 1.65 
BS 111, 03 71.19± 1.34 81.09± 2.42 9.82± 1.33 
CE 280, 03 81.43± 2.13 92.61± 2.07 11.36± 1.41 
FI 414, 03 82.24± 1.54 91.73± 1.21 9.50± 1.76 

LBS 271, 02 79.23± 1.92 90.02± 1.65 10.88± 0.64 
LBS 272, 03 77.56± 0.87 87.61± 1.03 10.11± 0.62 
MT 204, 03 82.24± 1.65 91.93± 2.23 9.96± 1.32 
MT 432, 03 84.03± 2.13 95.21± 1.22 11.16± 1.28 
PHY 183, 02 83.87± 1.73 94.09± 2.84 10.22± 1.92 
PHY 183, 03 76.56± 1.37 87.14± 1.69 9.36± 1.14 
PHY 231c, 03 80.67± 1.32 91.41± 2.27 10.74± 1.34 
PHY 232c, 03 81.55± 0.13 92.39± 1.58 10.78± 1.53 
PHY 232, 03 79.77± 1.64 88.61± 2.45 9.13± 2.23 
Total Average 78.98± 12 90.03± 1.30 10.53± 56 

 

The results in Table 4.17 represent the mean performance with a two-tailed t-test 

with a 95% confidence interval for every data set. For the improvement of GA over non-

GA result, a P-value indicating the probability of the Null-Hypothesis (There is no 

improvement) is also given, showing the significance of the GA optimization. All have 

p<0.000, indicating significant improvement. Therefore, using GA, in all the cases, we 

got approximately more than a 10% mean individual performance improvement and 

about 10 to 17% best individual performance improvement. Fig. 4.11 shows the results of 

one of the ten runs in the case of 2-Classes (passed and failed). The doted line represents 

the population mean, and the solid line shows the best individual at each generation and 

the best value yielded by the run. 
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Figure  4.11 GA-Optimized Combination of Multiple Classifiers’ (CMC) performance in the case of 
2-Class labels (Passed and Failed) for BS111 2003, 200 weight vectors individuals, 500 Generations  

Finally, we can examine the individuals (weights) for features by which we obtained 

the improved results. This feature weighting indicates the importance of each feature for 

making the required classification. In most cases the results are similar to Multiple Linear 

Regressions or some tree-based software (like CART) that use statistical methods to 

measure feature importance. The GA feature weighting results, as shown in Table 4.18, 

state that the “Success with high number of tries” is the most important feature. The 

“Total number of correct answers” feature is also the most important in some cases; both 

are positively correlated to the true class labels.  

If we use one course as the training data and another course as the test data we again 

achieve a significant improvement in prediction accuracy for both using the combination 

of multiple classifiers and applying genetic algorithms as the optimizer. For example, 

using BS111 from fall semester 2003 as the training set and PHY231 from spring 
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semester 2004 as the test data, and using the weighted features in the training set, we 

obtain a significant improvement for classification accuracy in the test data. 

 Table  4.18  Relative Feature Importance%, Using GA weighting for BS111 
2003 course 

Feature Importance % 
Average Number of  Tries 18.9 

Total number of Correct  Answers 84.7 
# of Success at the First Try 24.4 

# of Success at the Second Try 26.5 
Got Correct with 3-9 Tries 21.2 

Got Correct with # of Tries ≥ 10 91.7 
Time  Spent to Solve the Problems 32.1 
Total Time Spent on the Problems 36.5 

# of communication  3.6 
 

Table 4.19 shows the importance of the nine features in the BS 111 SS03 course, 

applying the Gini splitting criterion. Based on Gini, a statistical property called 

information gain measures how well a given feature separates the training examples in 

relation to their target classes.  Gini characterizes impurity of an arbitrary collection of 

examples S at a specific node N. In Duda et al. (2001) the impurity of a node N is 

denoted by i(N) such that:   

)(1)()()( Gini(S) 2
j

j
i

ij
j PPPNi ωωω ∑∑ −===

≠

  

where )( jP ω  is the fraction of examples at node N that go to category jω . Gini 

attempts to separate classes by focusing on one class at a time.  It will always favor 

working on the largest or, if you use costs or weights, the most important class in a node. 
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Table  4.19 Feature Importance for BS111 2003, using decision-tree software 
CART, applying Gini Criterion 

Variable    
Total number of Correct  Answers 100.00 |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Got Correct with # of Tries ≥ 10 93.34 |||||||||||||||||||||||||||||||||||||||||||||||||||||||| 

Average number of tries 58.61 ||||||||||||||||||||||||||||||||||| 
# of Success at the First Try 37.70 |||||||||||||||||| 
Got Correct with 3-9 Tries 30.31 |||||||||||||| 

# of Success at the Second Try 23.17 |||||||| 
Time  Spent to Solve the Problems 16.60 ||||| 
Total Time Spent on the Problems 14.47 |||| 

# of communication 2.21 | 
 

 

Comparing results in Table 4.18 (GA-weighting) and Table 4.19 (Gini index 

criterion) shows the very similar output, which demonstrates merits of the proposed 

method for detecting the feature importance.  

4.5 Summary 

We proposed a new approach to classifying student usage of web-based instruction. 

Four classifiers were used to segregate student data. A combination of multiple classifiers 

led to a significant accuracy improvement in all three cases (2-, 3- and 9-Classes).  

Weighting the features and using a genetic algorithm to minimize the error rate improved 

the prediction accuracy by at least 10% in the all cases. In cases where the number of 

features was low, feature weighting was a significant improvement over selection. The 

successful optimization of student classification in all three cases demonstrates the value 

of LON-CAPA data in predicting students’ final grades based on features extracted from 

homework data. This approach is easily adaptable to different types of courses, different 

population sizes, and allows for different features to be analyzed. This work represents a 



 

 139

rigorous application of known classifiers as a means of analyzing and comparing use and 

performance of students who have taken a technical course that was partially/completely 

administered via the web.  

For future work, we plan to implement such an optimized assessment tool for every 

student on any particular problem. Therefore, we can track students’ behaviors on a 

particular problem over several semesters in order to achieve more reliable prediction. 

This work has been published in (Minaei-Bidgoli & Punch, 2003; Minaei-Bidgoli, et al. 

2003; Minaei-Bidgoli et al., 2004c-e).  
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Chapter 5 Ensembles of Multiple Clusterings 

 

 

Since LON-CAPA data are distributed among several servers and distributed data 

mining requires efficient algorithms form multiple sources and features, this chapter 

represents a framework for clustering ensembles in order to provide an optimal 

framework for categorizing distributed web-based educational resources. This research 

extends previous theoretical work regarding clustering ensembles with the goal of 

creating an optimal framework for categorizing web-based educational resources. 

Clustering ensembles combine multiple partitions of data into a single clustering solution 

of better quality. Inspired by the success of supervised bagging and boosting algorithms, 

we propose non-adaptive and adaptive resampling schemes for the integration of multiple 

independent and dependent clusterings. We investigate the effectiveness of bagging 

techniques, comparing the efficacy of sampling with and without replacement, in 

conjunction with several consensus algorithms. In our adaptive approach, individual 

partitions in the ensemble are sequentially generated by clustering specially selected 

subsamples of the given data set. The sampling probability for each data point 

dynamically depends on the consistency of its previous assignments in the ensemble. 

New subsamples are then drawn to increasingly focus on the problematic regions of the 

input feature space. A measure of data point clustering consistency is therefore defined to 
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guide this adaptation. Experimental results show improved stability and accuracy for 

clustering structures obtained via bootstrapping, subsampling, and adaptive techniques. A 

meaningful consensus partition for an entire set of data points emerges from multiple 

clusterings of bootstraps and subsamples. Subsamples of small size can reduce 

computational cost and measurement complexity for many unsupervised data mining 

tasks with distributed sources of data. This empirical study also compares the 

performance of adaptive and non-adaptive clustering ensembles using different consensus 

functions on a number of data sets. By focusing attention on the data points with the least 

consistent clustering assignments, one can better approximate the inter-cluster boundaries 

and improve clustering accuracy and convergence speed as a function of the number of 

partitions in the ensemble. The comparison of adaptive and non-adaptive approaches is a 

new avenue for research, and this study helps to pave the way for the useful application 

of distributed data mining methods.  

5.1 Introduction 

Exploratory data analysis and, in particular, data clustering can significantly benefit 

from combining multiple data partitions. Clustering ensembles can offer better solutions 

in terms of robustness, novelty and stability (Fred & Jain, 2002; Strehl & Ghosh, 2002; 

Topchy et al., 2003a). Moreover, their parallelization capabilities are a natural fit for the 

demands of distributed data mining. Yet, achieving stability in the combination of 

multiple clusterings presents difficulties. 

The combination of clusterings is a more challenging task than the combination of 

supervised classifications. In the absence of labeled training data, we face a difficult 

correspondence problem between cluster labels in different partitions of an ensemble. 
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Recent studies (Topchy et al., 2004) have demonstrated that consensus clustering can be 

found outside of voting-type situations using graph-based, statistical or information-

theoretic methods without explicitly solving the label correspondence problem. Other 

empirical consensus functions were also considered in (Dudoit & Fridlyand, 2003; Fisher 

& Buhmann, 2003, Fern & Brodley, 2003). However, the problem of consensus 

clustering is known to be NP complete (Barthelemy & Leclerc, 1993). 

Beside the consensus function, clustering ensembles need a partition generation 

procedure. Several methods are known to create partitions for clustering ensembles. For 

example, one can use:  

1. different clustering algorithms (Strehl & Ghosh, 2002),  

2. different initializations – parameter values or built-in randomness of a specific 

clustering algorithm (Fred & Jain, 2002) 

3. different subsets of features (weak clustering algorithms) (Topchy et al., 

2003), 

4. different subsets of the original data (data resampling) (Dudoit & Fridlyand, 

2003; Fisher & Buhmann, 2003, Minaei et al., 2003).  

 

The focus of this study is the last method, namely the combination of clusterings 

using random samples of the original data. Conventional data resampling generates 

ensemble partitions independently; the probability of obtaining the ensemble consisting 

of B partitions {π1, π2,…,πB} of the given data, D, can be factorized as: 

)|()|},...,,({
121 DpDp t

B

tB ππππ
=
Π=  (5.1) 
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.  

Hence, the increased efficacy of an ensemble is mostly attributed to the number of 

independent, yet identically distributed partitions, assuming that a partition of data is 

treated as a random variable π. Even when the clusterings are generated sequentially, it is 

traditionally done without considering previously produced clusterings:  

1 2 1( | , ,..., ; ) ( | )t t t tp D p Dπ π π π π− − =  (5.2) 

 

However, similar to the ensembles of supervised classifiers using boosting algorithms 

(Brieman 1998), a more accurate consensus clustering can be obtained if contributing 

partitions take into account the previously determined solutions. Unfortunately, it is not 

possible to mechanically apply the decision fusion algorithms from the supervised 

(classification) to the unsupervised (clustering) domain. New objective functions for 

guiding partition generation and the subsequent decision integration process are 

necessary in order to guide further refinement. Frossyniotis et al. (2004) apply the general 

principle of boosting to provide a consistent partitioning of a data set. At each boosting 

iteration, a new training set is created and the final clustering solution is produced by 

aggregating the multiple clustering results through a weighted voting. 

We propose a simple adaptive approach to partition generation that makes use of 

clustering history. In clustering, ground truth in the form of class labels is not available. 

Therefore, we need an alternative measure of performance for an ensemble of partitions. 

We determine clustering consistency for data points by evaluating a history of cluster 

assignments for each data point within the generated sequence of partitions. Clustering 

consistency serves for adapting the data sampling to the current state of an ensemble 
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during partition generation. The goal of adaptation is to improve confidence in cluster 

assignments by concentrating sampling distribution on problematic regions of the feature 

space. In other words, by focusing attention on the data points with the least consistent 

clustering assignments, one can better approximate (indirectly) the inter-cluster 

boundaries. 

The main objectives of this chapter are four-fold:  

1. to present a detailed taxonomy of clustering ensemble approaches (section 

5.2),  

2. to expose critical and unaddressed issues in applying resampling methods 

(section 5.5),  

3. to provide a detailed comparison of bootstrap versus subsampling ensemble 

generation (section 5.7),  

4. and finally to study adaptive partitioning ensembles (section 5.6).  

The remainder of the chapter is devoted to different consensus functions used in our 

experiments (section 5.4), algorithms for resampling schemes (sections 5.3 and 5.6), 

addressing the problems of estimation of clustering consistency and finding a consensus 

clustering (section 5.6). Finally, we evaluate the performance of adaptive clustering 

ensembles (Section 5.8) on a number of real-world and artificial data sets in comparison 

with non-adaptive clustering ensembles of bootstrap partitions (Dudoit & Fridlyand, 

2003; Fisher & Buhmann, 2003, Minaei-Bidgoli et al., 2003b). 

5.2 Taxonomy of different approaches 

A growing number of techniques have been applied to clustering combinations. A 

co-association consensus function was introduced for finding a combined partition in 

(Fred & Jain, 2002). The authors further studied combining k-means partitions with 
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random initializations and a random number of clusters. Topchy et al. (2003) proposed 

new consensus functions related to intra-class variance criteria as well as the use of weak 

clustering components. Strehl and Ghosh (2002) have made a number of important 

contributions, such as their detailed study of hypergraph-based algorithms for finding 

consensus partitions as well as their object-distributed and feature-distributed 

formulations of the problem. They also examined the combination of partitions with a 

deterministic overlap of points between data subsets (non-random). 

Resampling methods have been traditionally used to obtain more accurate estimates 

of data statistics. Efron (1979) generalized the concept of so-called “pseudo-samples” to 

sampling with replacement – the bootstrap method. Resampling methods such as bagging 

have been successfully applied in the context of supervised learning (Breiman 1996). Jain 

and Moreau (1987) employed bootstrapping in cluster analysis to estimate the number of 

clusters in a multi-dimensional data set as well as for evaluating cluster tendency/validity.  

A measure of consistency between two clusters is defined in (Levine & Moreau, 2001). 

Data resampling has been used as a tool for estimating the validity of clustering (Fisher & 

Buhmann, 2003; Dudoit & Fridlyand, 2001; Ben-Hur et al., 2002) and its reliability (Roth 

et al., 2002).  

The taxonomy of different consensus functions for clustering combination is shown 

in Figure 5.2. Several methods are known to create partitions for clustering ensembles. 

This taxonomy presents solutions for the generative procedure as well. Details of the 

algorithms can be found in the listed references in Figure 5.1. 
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Generative mechanisms (How to obtain different components?) 
1. Apply various clustering algorithms (Strehl & Ghosh, 2002) 

2. Use a single algorithm 

     2.1. Different built-in initialization (Fred & Jain, 2002; Topchy et al. 2003b) 

     2.2. Different parameters (Fred & Jain, 2002) 

     2.3. Different subsets of data points 

           2.3.1. Deterministic subsets (Strehl & Ghosh, 2002) 

           2.3.2. Resampling (Dudoit & Fridlyand,2001;Monti et al. 2003; Fisher & Buhmann, 2003, 

Minaei-Bidgoli et al., 2003b) 

                  2.3.2.1. Bootstrap (Sampling with replacement) 

                  2.3.2.2. Subsampling (Sampling without replacement) 

                         2.3.2.3. Adaptive scheme (Topchy et al., 2004; Frossyniotis et al., 2004) 

      2.4. Projecting data onto different subspaces (Topchy et al., 2003a; Zhang&Brodely, 2003) 

      2.5. Different subset of features (Strehl & Ghosh, 2002) 

Consensus functions (How to integrate cluster ensemble?) 
1. Using Co-association Matrix (Fred & Jain, 2002; Monti et al., 2003) 

    1.1. Single Link (SL)/ Minimum Spanning Tree (MST)  

    1.2. Complete Link (CL)  

    1.3. Average Link (AL) 

    1.4. Ward, or other similarity based algorithms 

2. (Hyper) Graph Partitioning (Strehl & Ghosh, 2002) 

    2.1. Hyper Graph Partition Algorithm (HGPA)  

    2.2. Meta CLustering Algorithm (MCLA) 

    2.3. Clustering Similarity Partition Algorithm (CSPA) 

3. Information-theoretic methods, e.g. Quadratic Mutual Information (Topchy et al. 2003a) 

4. Voting Approach (Dudoit & Fridlyand,2001) 

5. Mixture Model (Topchy et al. 2003b) 

Figure  5.1  Different approaches to clustering combination 
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Figure  5.2   Taxonomy of different approaches to clustering combination 

It is a long-standing goal of clustering research to design scalable and efficient 

algorithms for large datasets (Zhang et al., 1996). One solution to the scaling problem is 

the parallelization of clustering by sharing processing among different processors (Zhang 

et al., 2000; Dhillon & Modha, 2000). Recent research in data mining has considered a 

fusion of the results from multiple sources of data or from data features obtained in a 

distributed environment (Park & Kargupta, 2003). Distributed data clustering deals with 

the combination of partitions from many data subsets (usually disjoint). The combined 

final clustering can be constructed centrally either by combining explicit cluster labels of 

data points or, implicitly, through the fusion of cluster prototypes (e.g., centroid-based). 

We analyze the first approach, namely, the clustering combination via consensus 

functions operating on multiple labelings of the different subsamples of a data set. This 
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study seeks to answer the question of the optimal size and granularity of the component 

partitions. 

5.3 Non-adaptive algorithms 

Bootstrap (sampling with replacement) and subsampling (without replacement) can 

discern various statistics from replicate subsets of data while the samples in both cases 

are independent of each other. Our goal is to obtain a reliable clustering with measurable 

uncertainty from a set of different k-means partitions. The key idea of the approach is to 

integrate multiple partitions produced by clustering of pseudo-samples of a data set.  

Clustering combinations can be formalized as follows. Let D be a data set of N data 

points in d-dimensional space. The input data can be represented as an N × d pattern 

matrix or N × N dissimilarity matrix, potentially in a non-metric space. Suppose that X = 

{X1,…,XB} is a set of B bootstrap samples of size N or subsamples of size S < N. A 

chosen clustering algorithm is run on each of the samples in X, which results in B 

partitions Π={π1, π2,…, πB}. Each component partition in Π is a set of non-overlapping 

and exhaustive clusters with πi={ iC1 , iC2 ,…, i
ikC )( }, Xi = i

ik
i CC )(1 ...UU , ∀πi, where k(i) is 

the number of clusters in the i-th partition.  

The problem of combining partitions is to find a new partition σ ={C1,…,CM} of the 

entire data set D given the partitions in Π, such that the data points in any cluster of σ are 

more similar to each other than to points in different clusters within σ. We assume that 

the number of clusters, M, in the consensus clustering is predefined and can be different 

from the number of clusters, k, in the ensemble partitions. In order to find the target 

partition σ, one needs a consensus function utilizing information from the partitions {πi}. 
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Several known consensus functions (Fred & Jain, 2002; Strehl & Ghosh, 2002; Topchy et 

al., 2003a) can be employed to map a given set of partitions Π={π1, π2,…, πB} to the 

target partition, σ, in our study.  

The similarity between two objects, x and y, is defined as follows: 
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),(δ        (5.3) 

 

Similarity between a pair of objects simply counts the number of clusters shared by the 

objects in the partitions {π1,…, πB}. Under the assumption that diversity comes from 

independent resampling, two families of algorithms can be proposed for integrating 

clustering components (Minaei-Bidgoli et al., 2004a,b).  

5.3.1   Similarity-based algorithm 

The first algorithm family is based on the co-association matrix, and employs a group 

of hierarchical clustering algorithms to find the final target partition. In this type, 

similarity-based clustering algorithms are used as the consensus function, Γ. Hierarchical 

clustering consensus functions with single-, complete-, and average-linkage criteria were 

used to obtain a target consensus clustering, σ.  The pseudocode of these algorithms is 

shown in Figure 5.3. 
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Input: D – the input data set N points 
B – number of partitions to be combined 
M – number of clusters in the final partition, σ 
k – number of clusters in the components of the combination 
Γ – a similarity-based clustering algorithm  
for  j=1 to B 
      Draw a random pseudosample Xj 
        Cluster the sample Xj: π (i)←k-means({Xj}) 
        Update similarity values (co-association matrix) for all patterns in Xj 
end 
Combine partitions via chosen  Γ: σ ←Γ (P)  
Validate final partition, σ (optional) 
return σ   // consensus partition  

Figure  5.3   First algorithms for clustering ensemble, based on co-association 
matrix and using different similarity-based consensus functions 

5.3.2 Algorithms based on categorical clustering 

The second family of algorithms for achieving clustering combination is based on 

new features extracted through the partitioning process. In this approach, one can view 

consensus clustering as clustering in a space of new features induced by the set, Π. Each 

partition, πi, represents a feature vector with categorical values. The cluster labels of each 

object in different partitions are treated as a new feature vector, a B-tuple, given B 

different partitions in Π.  
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 Table  5.1  (a) Data points and feature values, N rows and d columns. Every row 
of this table shows a feature vector corresponding to N points. (b) Partition labels 

for resampled data, n rows and B columns. 
(a) 

Data Features 
X1 x11 x12 … x1j … x1d 
X2 x21 x22 … x2j … x2d 
… … … … … … … 
Xi xi1 xi2 … xij … xid 
… … … … … … … 
XN xN1 xN2 … xNj … xNd 

 
(b) 

Data Partitions Labels 
X1 π1(x1) π2(x1) … πj(x1) … πB(x1) 
X2 π1(x2) π2(x2) … πj(x2) … πB(x2) 
… … … … … … … 
Xi π1(xi) π2(xi) … πj(xi) … πB(xi) 
… … … … … … … 
XN π1(xN) π2(xN) … πj(xN) … πB(xN) 
 

Therefore, instead of the original d attributes, which are shown in Table 5.1(a), the 

new feature vectors from a table with N rows and B columns (Table 5.1(b)) are utilized, 

where each column corresponds to the results of mapping a clustering algorithm (k-

means) onto the resampled data and every row is a new feature extracted vector, with 

categorical (nominal) values. Here, πj(xi) denotes the label of object xi in the j-th partition 

of Π. Hence the problem of combining partitions becomes a categorical clustering 

problem.  
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Input: D – the input data set N points 
B - number of partitions to be combined 
M – number of clusters in the final partition σ 
k – number of clusters in the components of the combination 
Γ - consensus function operating with categorical features  
Reference Partition  ← k-means(D) 
for  i=1 to B 

         Draw a random pseudo-sample Xj 
         Cluster the sample Xj: π (i) ← k-means({Xj}) 
         Store partition πi  

end 
Re-label (if necessary)  
Apply consensus function Γ on the set of partition labels, Π, to find final partition σ 
Validate final partition σ (optional) 
return σ   // consensus partition 

Figure  5.4  Algorithms for clustering ensemble based on categorical clustering 

The parameter k in both algorithms is the number of clusters in every component 

partition. If the value of k is too large then the partitions will overfit the data set, and if k 

is too small then the number of clusters may not be large enough to capture the true 

structure of data set. In addition, if the total number of clusterings, B, in the combination 

is too small then the effective sample size for the estimates of distances between co-

association values is also insufficient, resulting in a larger variance. In the case of the 

subsampling algorithm (without replacement), the right choice of sample size S is closely 

related to the value of k and the value of B and proper setting of S is required to reach 

convergence to the true structure of the data set. The algorithmic parameters will be 

discussed in section 6. In the rest of this chapter “k” stands for number of clusters in 

every partition, “B” for number of partitions/pseudosamples (in both the bootstrap and 

the subsampling algorithms), and “S” for the sample size. 
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5.4 Consensus functions 

A consensus function maps a given set of partitions Π = {π1,…, πB} to a target 

partition σ. In this experiment we have employed four types of consensus functions:  

5.4.1  Co-association based functions 

This consensus function operates on the co-association matrix. Similarity between 

points (co-association values) can be estimated by the number of clusters shared by two 

points in all the partitions of an ensemble. Then, numerous hierarchical agglomerative 

algorithms (criteria) can be applied to the co-association matrix to obtain the final 

partition, including Single Link (SL), Average Link (AL) and Complete Link (CL) (Jain 

& Dubes, 1988). There are three main drawbacks to this approach.  

 First, it has a quadratic computational complexity in the number of patterns and 

features O(kN2d2) (Duda et al., 2001), where k is the number of clusters, N is the 

number of data points, and d is the number of features.  

 Second, there are no established guidelines for which clustering algorithm should be 

applied, e.g. single linkage or complete linkage.  

 Third, an ensemble with a small number of partitions may not provide a reliable 

estimate of the co-association values (Topchy et al. 2003b). 

5.4.2  Quadratic Mutual Information Algorithm (QMI) 

 Assuming that the partitions are independent, a consensus function based on k-

means clustering in the space of standardized features can effectively maximize a 

generalized definition of mutual information (Topchy et al., 2003a). The complexity of 

this consensus function is O(kNB), where k is the number of clusters, N is the number of 
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items, and B is the number of partitions. Though the QMI algorithm can be potentially 

trapped in a local optimum, its relatively low computational complexity allows the use of 

multiple restarts in order to choose a quality consensus solution with minimum intra-

cluster variance. 

5.4.3  Hypergraph partitioning 

The clusters could be represented as hyperedges on a graph whose vertices 

correspond to the data points to be clustered. The problem of consensus clustering is then 

reduced to finding the minimum-cut of a resulting hypergraph. The minimum k-cut of 

this hypergraph into k components gives the required consensus partition (Strehl & 

Ghosh, 2002). Hypergraph algorithms seem to work effectively for approximately 

balanced clusters. Though the hypergraph partitioning problem is NP-hard, efficient 

heuristics to solve the k-way min-cut partitioning problem are known, i.e. the complexity 

of CSPA, HGPA and MCLA is estimated in Strehl & Ghosh (2002) as O(kN2B), O(kNB), 

and O(k2NB2), respectively. These hypergraph algorithms are described in Strehl & 

Ghosh (2002) and their corresponding source codes are available at 

http://www.strehl.com. A drawback of hypergraph algorithms is that they seem to work 

the best for nearly balanced clusters (Topchy et al., 2003b). 

5.4.4  Voting approach 

In the previous algorithms there is no need to explicitly solve the correspondence 

problem between the labels of known and derived clusters. The voting approach attempts 

to solve the correspondence problem and then uses a majority vote to determine the final 

consensus partition (Dudoit & Fridlyand, 2003). The main idea is to permute the cluster 
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labels such that the best agreement between the labels of two partitions is obtained. All 

the partitions from the ensemble must be re-labeled according to a fixed reference 

partition. The complexity of this process is O(k!), which can be reduced to O(k3) if the 

Hungarian method is employed for the equivalent minimal weight bipartite matching 

problem.  

All the partitions in the ensemble can be re-labeled according to their best agreement 

with some chosen reference partition.  A meaningful voting procedure assumes that the 

number of clusters in every given partition is the same as in the target partition. This 

requires that the number of clusters in the target consensus partition is known (Topchy et 

al. 2003b). 

The performance of all these consensus methods is empirically analyzed as a 

function of two important parameters: the type of sampling process (sample redundancy) 

and the granularity of each partition (number of clusters).  

5.5 Critical issues in resampling 

Let us emphasize the challenging points of using resampling techniques for 

maintaining diversity of partitions and estimation of co-association values.  

5.5.1  Variable number of samples 

There is no essential difference between bootstrap and subsampling algorithms with 

regard to the diversity of the data samples. In both cases the pseudosample can be 

incomplete (missing some objects). In bootstrap one has no control over the number of 

distinct objects in a sample, while in subsampling the size of a pseudosample can be 
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much smaller than the original sample size. On the average, 37% of objects are not 

included into a bootstrap sample (Hastie et al., 2001). 

5.5.2  Repetitive data points (objects) 

 In resampling with replacement (bootstrap) some of the data points can be drawn 

multiple times. However, in computing the co-association matrix, only one copy of a data 

point should contribute to the co-association similarity. Hence, for repeated objects, we 

count each pair of objects only once. This problem does not appear in the case of 

subsampling 

5.5.3  Similarity estimation 

Co-association values require adjustment when bootstrap partitions are used. 

Typically the similarity value between the objects x and y, sim(x,y), is calculated by 

counting the number of shared clusters in all the given partitions (Eq. 5.4). This is 

justified when each possible pair of objects appears the same number of times in these 

partitions. However, in bootstrap, different objects can appear in a different number of 

samples.  Therefore, the effective sample size for a pair of objects may no longer be equal 

to B. Hence, co-association values should be computed as following: 

∑
=

=
R

i
ii yPxP

R
yxsim

1
))(),((1),( δ ,  (5.4) 

where R is the number of bootstrap samples containing both x and y, and the sum is taken 

over such samples. 
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5.5.4  Missing labels 

In both bootstrap and subsampling, some of the objects are missed in drawn samples. 

When one uses co-association based methods, this poses no difficulty because the co-

association values are only updated for existing objects. However, missing labels can 

cause a number of problems for other consensus functions. For example, when an object 

is missing in a bootstrap sample, there will be no label assigned to it after running the 

clustering algorithm. Thus, special consideration of the missing labels is necessary during 

the process of re-labeling, before running a consensus function. 

5.5.5  Re-labeling 

We must consider how to re-label two bootstrap samples with missing values. When 

the number of objects in the drawn samples is too small, this problem becomes harder. 

For example, consider four partitions, P1, …,P4 for five data points x1, …,x5 as shown in 

Table 5.2. 

Table  5.2   An illustrative example of re-labeling difficulty involving five data 
points and four different clusterings of four bootstrap samples. The numbers 

represent the labels assigned to the objects and the “?” shows the missing labels of 
data points in the bootstrapped samples. 

 P1 P2 P3 P4 
x1 1 ? 2 3 
x2 1 2 3 1 
x3 ? 2 ? 2 
x4 ? ? 1 ? 
x5 2 1 3 1 

 
 
One can re-label the above partitions in relation to some reference partition. 

However, the missing labels should not be considered in the re-labeling process. 

Therefore, if the reference partition is P1, and we want to re-label P2, then only the data 
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points x2 and x5 participate in the re-labeling process. Similarly, if P3 is re-labeled based 

on the reference P1, then x1, x2 and x3 are used in the Hungarian algorithm to find the best 

match. Once the best agreement among the given labels is found then all the objects in 

the partition, except those with missing labels, are re-labeled. 

5.5.6  Adaptation of the k-means algorithm 

The core of the QMI consensus function is the k-means algorithm, which utilizes a 

special transformation of the space of N × B extracted labels. Since no labels are assigned  

to the missing objects using the clustering algorithm, the missing objects should not be 

considered in the k-means algorithm that calculates the mutual information among the 

obtained labels and the target partition. A revised and extended version of the k-means 

algorithm was developed such that it can handle the missing coordinates, as described in 

Jain & Dubes (1988) and Dixon (1979). The k-means algorithm calculates the Euclidean 

distances between every object and the cluster centers. If some coordinates are missing 

then those coordinates are ignored in the calculation. The experiments in this study used 

this modification of the k-means for the QMI algorithm. 

5.6 Adaptive sampling scheme 

While there are many ways to construct diverse data partitions for an ensemble, not 

all of them easily generalize to adaptive clustering. The adaptive approach (Topchy et al., 

2004) extends the studies of ensembles whose partitions are generated via data 

resampling (Dudoit &  Fridlyand 2003; Fisher & Buhmann, 2003; Minaei et al, 2004).  

Though, intuitively, clustering ensembles generated by other methods also can be 

boosted. The adaptive partition generation mechanism (Brieman, 1998) is aimed at 
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reducing the variance of inter-class decision boundaries. Unlike the regular bootstrap 

method that draws subsamples uniformly from a given data set, adaptive sampling favors 

points from regions close to the decision boundaries. At the same time, the points located 

far from the boundary regions are sampled less frequently. It is instructive to consider a 

simple example that shows the difference between ensembles of bootstrap partitions with 

and without the weighted sampling. Figure 5.5 shows how different decision boundaries 

can separate two natural classes depending on the sampling probabilities. Here we 

assume that the k-means clustering algorithm is applied to the subsamples.  

Initially, all the data points have the same weight, namely, the sampling 

probability 1
Nip = , i∈[1,…,N]. Clearly, the main contribution to the clustering error is 

due to the sampling variation that causes inaccurate inter-cluster boundaries. Solution 

variance can be significantly reduced if sampling is increasingly concentrated only on the 

subset of objects at iterations t2 > t1 > t0, as demonstrated in Figure 5.5.  

 The key issue in the design of the adaptation mechanism is the updating of 

probabilities. We have to decide how and which data points should be sampled as we 

collect more and more clusterings in the ensemble. A consensus function based on the co-

association values (Jain & Fred, 2002) provides the necessary guidelines for adjustments 

of sampling probabilities. Remember that the co-association similarity between two data 

points, x and y, is defined as the number of clusters shared by these points in the 

partitions of an ensemble, Π: 
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Figure  5.5   Two possible decision boundaries for a 2-cluster data set. Sampling 
probabilities of data points are indicated by gray level intensity at different 

iterations (t0 < t1 < t2) of the adaptive sampling. True components in the 2-class 
mixture are shown as circles and triangles. 

Table  5.3. Consistent re-labeling of 4  partitions of 12 objects. 

 

A consensus clustering can be found by using an agglomerative clustering algorithm 

(e.g., single linkage) applied to such a co-association matrix constructed from all the 

points. The quality of the consensus solution depends on the accuracy of similarity values 

as estimated by the co-association values. The least reliable co-association values come 

from the points located in the problematic areas of the feature space. Therefore, our 

t0 t1 t2
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adaptive strategy is to increase the sampling probability for such points as we proceed 

with the generation of different partitions in the ensemble. 

The sampling probability can be adjusted not only by analyzing the co-association 

matrix, which is of quadratic complexity O(N2), but also by applying the less expensive 

O(N + K3) estimation of clustering consistency for the data points. Again, the motivation 

is that the points with the least stable cluster assignments, namely those that frequently 

change the cluster they are assigned to, require an increased presence in the data 

subsamples. In this case, a label correspondence problem must be approximately solved 

to obtain the same labeling of clusters throughout the ensemble’s partitions. By default, 

the cluster labels in different partitions are arbitrary. To make the correspondence 

problem more tractable, one needs to re-label each partition in the ensemble using some 

fixed reference partition. Table 5.3 illustrates how four different partitions of twelve 

points can be re-labeled using the first partition as a reference.  

At the (t+1)-th iteration, when some t different clusterings are already included in the 

ensemble, we use the Hungarian algorithm for minimal weight bipartite matching 

problem in order to re-label the (t+1)-th partition. As an outcome of the re-labeling 

procedure, we can compute the consistency index of clustering for each data point. 

Clustering consistency index CI at iteration t for a point x is defined as the ratio of the 

maximal number of times the object is assigned in a certain cluster to the total number of 

partitions: 
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The values of consistency indices are shown in Table 5.3 after four partitions were 
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generated and re-labeled. We should note that clustering of subsamples of the data set, D, 

does not provide the labels for the objects missing (not drawn) in some subsamples. In 

this situation, the summation in Eq. (5.5) skips the terms containing the missing labels. 

The clustering consistency index of a point can be directly used to compute its 

sampling probability. In particular, the probability value is adjusted at each iteration as 

follows:                  

1 ( ) ( ( ) 1 ( )),t tp x Z p x C I xα+ = + −   (5.6) 

 

where α is a discount constant for the current sampling probability and Z is a 

normalization factor. The discount constant was set to α=0.3 in our experiments. The 

proposed clustering ensemble algorithm is summarized in pseudocode in Figure 5.6: 
 

Input:  D – data set of N  points 
B –  number of partitions to be combined 
M – number of clusters in the consensus partition σ 
K – number of clusters in the partitions of the ensemble 
Γ –  chosen  consensus function operating on cluster labels  
p – sampling probabilities (initialized to 1/N for all the points) 
Reference Partition ← k-means(D) 
for  i=1 to B 

    Draw a subsample Xi from D using sampling probabilities p 
    Cluster the sample Xi: π(i) ← k-means(Xi)  
    Re-label partition π(i) using the reference partition 
    Compute the consistency indices for the data points in D 
    Adjust the sampling probabilities p 

end 
Apply consensus function Γ to ensemble Π to find the partition σ 
Validate the target partition σ  (optional) 
return σ   // consensus partition 

Figure  5.6 Algorithms for adaptive clustering ensembles  
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5.7 Experimental study on non-adaptive approaches 

The experiments were performed on several data sets, including two challenging 

artificial problem, the “Halfrings” data set, and the “2-Spiral” data set, two data sets from 

UCI repository, the “Iris” and “Wine” and two other real world data set, the “LON” and 

“Star/Galaxy” data sets. A summary of data set characteristics is shown in Table 5.4. 
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  Figure  5.7 “Halfrings” data set with 400 patterns (100-300 per class) , “2-

Spirals” dataset with 200 patterns (100-100 per class) 

Table  5.4. A summary of data sets characteristics 
 

 No. of 
Classes 

No. of 
Features 

No. of 
Patterns 

Patterns per 
class 

Star/Galaxy 2 14 4192 2082-2110 
Wine 3 13 178 59-71-48 
LON 2 6 227 64-163 
Iris 3 4 150 50-50-50 

3-Gaussian 3 2 300 50-100-150 
Halfrings 2 2 400 100-300 
2-Spirals 2 2 200 100-100 

 

5.7.1  Data sets 

The Halfrings and 2-Spiral data set, as shown in Figure 5.7, consist of two clusters, 

though the clusters are unbalanced with 100- and 300-point patterns in the Halfrings data 

set and balanced in the 2-Spiral. The k-means algorithm by itself is not able to detect the 
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two natural clusters since it implicitly assumes hyperspherical clusters. 3-Gaussian is a 

simulated data set that includes three unbalanced classes with 50, 100, and 150 data 

points. The Wine data set described in Aeberhard et al. (1992) contains the value of the 

chemical composition of wines grown in the same region but derived from three different 

cultivars. The patterns are described by the quantities of thirteen constituents (features) 

found in each of the three types of wines. There are 178 samples in total.  

The LON data set (Minaei & Punch, 2003) is extracted from the activity log in a 

web-based course using an online educational system developed at Michigan State 

University (MSU): the Learning Online Network with Computer-Assisted Personalized 

Approach (LON-CAPA). The data set includes the student and course information on an 

introductory physics course (PHY183), collected during the spring semester 2002. This 

course included 12 homework sets with a total of 184 problems, all of which were 

completed online using LON-CAPA. The data set consists of 227 student records from 

one of the two groups: “Passed” for the grades above 2.0, and “Failed” otherwise. Each 

sample contains 6 features.  

The Iris data set contains 150 samples in 3 classes of 50 samples each, where each 

class refers to a type of iris plant.  One class is linearly separable from the other two, and 

each sample has four continuous-valued features. The Star/Galaxy data set described in 

Odewahn (1992) has a significantly larger number of samples (N=4192) and features 

(d=14). The task is to separate observed objects into stars or galaxies.  Domain experts 

manually provided true labels for these objects.  

For all these data sets the number of clusters, and their assignments, are known. 

Therefore, one can use the misassignment (error) rate of the final combined partition as a 
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measure of performance of clustering combination quality.  One can determine the error 

rate after solving the correspondence problem between the labels of derived and known 

clusters. The Hungarian method for solving the minimal weight bipartite matching 

problem can efficiently solve this label correspondence problem.    

 

5.7.2  The role of algorithm's parameters 

The bootstrap experiments probe the accuracy of partition combination as a function 

of the resolution of partitions (value of k) and the number of partitions, B (number of 

partitions to be merged). 

One of our goals was to determine the minimum number of bootstrap samples, B, 

necessary to form high-quality combined cluster solutions. In addition, different values of 

k in the k-means algorithm provide different levels of resolution for the partitions in the 

combinations. We studied the dependence of the overall performance on the number of 

clusters, k. In particular, clustering on the bootstrapped samples was performed for the 

values of B in the range [5, 1000] and the values of k in the interval [2, 20].   

Analogously, the size of the pseudosample, S, in subsampling experiments is another 

important parameter. Our experiments were performed with different subsample sizes in 

the interval [N/20, 3N/4], where N is the size of the original data sample. Thus, in the 

case of the Halfrings, S was taken in the range [20, 300] where the original sample size is 

N=400, while in the case of the Galaxy data set, parameter S was varied in the range [200, 

3000] where N=4192. Therefore, in resampling without replacement, we analyzed how 

the clustering accuracy was influenced by three parameters: number of clusters, k, in 

every clustering, number of drawn samples, B, and the sample size, S. Note that all the 
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experiments were repeated 20 times and the average error rate for 20 independent runs is 

reported, except for the Star/Galaxy data where 10 runs were performed. 

The experiments employed eight different consensus functions: co-association based 

functions (single link, average link, and complete link), hypergraph algorithms (HGPA, 

CSPA, MCLA), the QMI algorithm, as well as a Voting-based function.  

 

5.7.3  The Role of Consensus Functions (Bootstrap algorithm) 

Perhaps the single most important design element of the combination algorithm is 

the choice of a consensus function. In the Halfrings data set the true structure of the data 

set (100% accuracy) was obtained using co-association based consensus functions (both 

single and average link) in the case of k=15 and number of partitions taking part in the 

combination where B≥100. None of the other six consensus methods converged to an 

acceptable error rate for this data set. 

 For the Wine data set an optimal accuracy of 73% was obtained with both the 

hypergraph-CSPA algorithm and co-association based method using average link (AL) 

with different parameters as shown in Table 5.6. For the LON data set the optimal 

accuracy of 79% was achieved only by co-association-based (using the AL algorithm) 

consensus function. This accuracy is comparable to the results of the k-NN classifier, 

multilayer perceptron, naïve Bayes classifier, and some other algorithms when the “LON” 

data set is classified in a supervised framework based on labeled patterns (Minaei & 

Punch, 2003). 



 

 167

0

10

20

30

40

50

60

70

80

5 10 20 50 100 250

Number of Partitions, B

# 
of

 m
is

as
si

gn
ed

 p
at

te
rn

s

k = 2
k = 3
k = 4
k = 5
k = 10

Iris,  MCLA

 
Figure  5.8    “Iris” data set. Bootstrapping for fixed consensus function MCLA, 

different B, and different values of k. 

For the “Iris” data set, the hypergraph consensus function, HPGA algorithm led to 

the best results when k ≥ 10. The AL and the QMI algorithms also gave acceptable 

results, while the single link and average link did not demonstrate a reasonable 

convergence. Figure 5.8 shows that the optimal solution could not be found for the Iris 

data set with k in the range [2, 5], while the optimum was reached for k ≥ 10 with only 

B≥10 partitions. 

For the Star/Galaxy data set the CSPA function (similarity based hypergraph 

algorithm) could not be used due to its computational complexity because it has a 

quadratic complexity in the number of patterns O(kN2B). 

The HGPA function and SL did not converge at all, as shown in Table 5.5. Voting 

and complete link also did not yield optimal solutions. However, the MCLA, the QMI 



 

 168

and the AL functions led to an error rate of approximately 10%, which is better than the 

performance of an individual k-means result (21%). 

 The major problem in co-association based functions is that they are 

computationally expensive. The complexity of these functions is very high (O(kN2d2)) 

and therefore, it is not effective to use the co-association based functions as a consensus 

function for the large data sets.  

Table  5.5    “Star/Galaxy” data experiments. Average error rate (% over 10 
runs) of clustering combination using resampling algorithms with different number 

of components in combination B, resolutions of components, k, and types of 
consensus functions.  

K B QMI MCLA SL AL CL Voting 
2 5 18.5 19.4 49.7 49.7 49.7 20.4 
2 10 18.7 18.8 49.6 49.6 49.6 19.5 
2 20 18.5 18.9 49.6 24.4 49.7 19 
2 50 18.7 18.8 49.6 18.8 49.7 18.9 
2 100 18.8 18.8 49.7 18.8 18.8 18.9 
3 5 13.4 15.5 49.7 49.7 49.7 - 
3 10 17.8 15.6 49.6 49.6 49.6 - 
3 20 11.5 15.3 49.7 18.8 42.9 - 
3 50 13.3 15.4 49.7 11 35.9 - 
3 100 11 15.4 49.7 11 48.2 - 
4 5 15.2 13.1 49.7 49.7 49.7 - 
4 10 11.4 14.5 49.6 49.7 49.7 - 
4 20 14 13.7 49.6 24.3 48.7 - 
4 50 22.2 11.9 49.7 10.7 48 - 
4 100 11 11.9 49.7 10.7 47.9 - 
5 5 14.9 13.8 49.7 49.7 49.7 - 
5 10 14.9 13.1 49.7 47.9 49.6 - 
5 20 10.7 13.4 49.6 11 49.7 - 
5 50 11.4 13.4 49.7 10.8 48.7 - 
5 100 11 12.5 49.7 10.9 48 - 
 

Note that the QMI algorithm did not work well when the number of partitions 

exceeded 200, especially when the value of k was large. This might be due to the fact that 

the core of the QMI algorithm operates in k×B–dimensional space. The performance of 
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the k-means algorithm degrades considerably when B is large (>100) and, therefore, the 

QMI algorithm should be used with smaller values of B. 

5.7.4  Effect of the Resampling method (Bootstrap vs. 

Subsampling) 

In subsampling the smaller the S the lower the complexity of the k-means clustering, 

which therefore results in much smaller complexity in the co-association based consensus 

functions, which is super-linear N. Comparing the results of the bootstrap and the 

subsampling methods shows that when the bootstrap technique converges to an optimal 

solution, that optimal result could be obtained by the subsampling as well, but with a 

critical size of the data points. For example, in the Halfrings data set the perfect 

clustering can be obtained using a single-link consensus function with k=10, B=100 and 

S=200 (1/5 data size) as shown in Figure 5.9 (compare to the bootstrap results in table 

5.6) while this perfect results can be achieved with k=15, B = 50, and S = 80 (1/5 data 

size). Thus, there is a trade off between the number of partitions B and the sample size S. 

This comparison shows that the subsampling method can be much faster than the 

bootstrap (N=400) in relation to the computational complexity.  
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Figure  5.9 “Halfrings” data set. Experiments using subsampling with k=10 and 

B=100, different consensus function, and sample sizes S. 

The results of subsampling for "Star/Galaxy" data set as shown in Figure 5.10, shows 

that in resolution k=3 and number of partitions B=100, with only sample size S = 500 (1/8 

of the entire data size) one can reach 89% accuracy, the same results with entire data set 

in the bootstrap method. It shows that for this large data set, a small fraction of data can 

be representative of the entire data set, and this would be computationally very interesting 

in distributed data mining.   
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Figure  5.10   “Star/Galaxy” data set. Experiments using subsampling, with k = 4 

and B = 50 and different consensus function and sample sizes S. 

Note that in both the bootstrap and the subsampling algorithms all of the samples are 

drawn independently, and thus the resampling process could be performed in parallel. 

Therefore, using the B parallel processes, the computational process becomes B times 

faster.  

Table 5.6 shows the error rate of classical clustering algorithms, which are used in 

this research. The error rates for the k-means algorithm were obtained as the average over 

100 runs, with random initializations for the cluster centers, where value of k was fixed to 

the true number of clusters. One can compare it to the error rate of ensemble algorithms 

in Table 5.7.  
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 Table  5.6 The average error rate (%) of classical clustering algorithms. An 
average over 100 independent runs is reported for the k-means algorithms  

Data set k-means Single Link Complete Link Average Link 
Halfrings 25% 24.3% 14% 5.3% 

Iris 15.1% 32% 16% 9.3% 
Wine 30.2% 56.7% 32.6% 42% 
LON 27% 27.3% 25.6% 27.3% 

Star/Galaxy 21% 49.7% 44.1% 49.7% 

Table  5.7   Summary of the best results of Bootstrap methods  

Data set Best Consensus 
function(s) 

Lowest Error 
rate obtained Parameters 

Halfrings Co-association, SL 
Co-association, AL 

0% 
0% 

k ≥  10, B. ≥ 100 
k ≥  15, B ≥  100 

Iris Hypergraph-HGPA 2.7% k ≥  10, B ≥  20 
Hypergraph-CSPA 26.8% k ≥  10, B ≥  20 Wine Co-association, AL 27.9% k ≥  4, B ≥  100 

LON Co-association, CL 21.1% k ≥  4,  B ≥ 100 

Galaxy/ Star 
Hypergraph-MCLA 
Co-association, AL 
Mutual Information 

9.5% 
10% 
11% 

k ≥  20, B ≥  10 
k ≥  10, B ≥  100 
k ≥  3, B ≥  20 
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 Table  5.8   Subsampling methods: trade-off among the values of k, the number 
of partitions B, and the sample size, S. Last column denote the percentage of sample 

size regarding the entire data set.  (Bold represents most optimal)  

Data set 
Best 

Consensus 
function(s) 

Lowest 
Error 
rate 

k B S 
% of 
entire 
data 

SL 0% 10 100 200 50% 
SL 0% 10 500 80 20% 
AL 0% 15 1000 80 20% Halfrings 

AL 0% 20 500 100 25% 
HGPA 2.3% 10 100 50 33% Iris HGPA 2.1% 15 50 50 33% 

AL 27.5% 4 50 100 56% 
HPGA 28% 4 50 20 11% Wine 
CSPA 27.5% 10 20 50 28% 

CL 21.5% 4 500 100 44% LON CSPA 21.3% 4 100 100 44% 
MCLA 10.5% 10 50 1500 36% 
MCLA 11.7% 10 100 200 5% Galaxy/ 

Star AL 11% 10 100 500 12% 
 
The optimal size S and granularity of the component partitions derived by 

subsampling are reported in Table 5.8. We see that the accuracy of the resampling 

method is very similar to that of the bootstrap algorithm, as reported in Table 5.6. This 

level of accuracy was reached with remarkably smaller sample sizes and much lower 

computational complexity! The trade-off between the accuracy of the overall clustering 

combination and computational effort for generating component partitions is shown in 

table 8, where we compare accuracy of consensus partitions. The most promising result is 

that only a small fraction of data (i.e., 12% or 5% for the “Star/Galaxy” data set) is 

required to obtain the optimal solution of clustering, both in terms of accuracy and 

computational time. 

The question of the best consensus function remains open for further study. Each 

consensus function explores the structure of data set in different ways, thus its efficiency 

greatly depends on different types of existing structure in the data set. One can suggest 
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having several consensus functions and then combining the consensus function results 

through maximizing mutual information (Strehl & Ghosh; 2002), but running different 

consensus functions on large data sets would be computationally expensive.  

5.8 Empirical study and discussion of Adaptive approach 

The experiments were conducted on artificial and real-world data sets (“Galaxy”, 

“half-rings”, “wine”, “3-gaussian”, “Iris”, “LON”), with known cluster labels, to validate 

the accuracy of consensus partition. A comparison of the proposed adaptive and previous 

non-adaptive (Minaei et al. 2004) ensemble is the primary goal of the experiments. We 

evaluated the performance of the clustering ensemble algorithms by matching the 

detected and the known partitions of the datasets. The best possible matching of clusters 

provides a measure of performance expressed as the misassignment rate. To determine 

the clustering error, one needs to solve the correspondence problem between the labels of 

known and derived clusters. Again, the Hungarian algorithm was used for this purpose. 

The k-means algorithm was used to generate the partitions of samples of size N drawn 

with replacement, similar to bootstrap, albeit with dynamic sampling probability. Each 

experiment was repeated 20 times and average values of error (misassignment) rate are 

shown in Figure 5.11.  

Consensus clustering was obtained by four different consensus functions: 

hypergraph-based MCLA and CSPA algorithms (Strehl & Ghosh; 2002), quadratic 

mutual information (Topchy et al., 2003a) and EM algorithm based on mixture model 

(Topchy et al., 2003b). Herein, we report only the key findings. The main observation is 

that adaptive ensembles slightly outperform the regular sampling schemes on most 

benchmarks. Typically, the clustering error decreased by 1-5%. Accuracy improvement 
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depends on the number of clusters in the ensemble partitions (k). Generally, the adaptive 

ensembles were superior for values of k larger than the target number of clusters, M, by 

1or 2. With either too small or too large a value of k, the performance of adaptive 

ensembles was less robust and occasionally worse than corresponding non-adaptive 

algorithms. A simple inspection of probability values always confirmed the expectation 

that points with large clustering, uncertainty are drawn more frequently. 
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(d) 

Figure  5.11   Clustering accuracy for ensembles with adaptive and non-adaptive 
sampling mechanisms as a function of ensemble size for some data sets and selected 

consensus functions. 

Most significant progress was detected when combination consisted of 25-75 

partitions. Large numbers of partitions (B>75) almost never lead to further improvement 

in clustering accuracy. Moreover, for B>125 we often observed increased error rates 

(except for the hypergraph-based consensus functions), due to the increase in complexity 

of the consensus model and in the number of model parameters requiring estimation. 
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5.9 Concluding remarks 

A new approach to combine partitions is proposed by resampling of original data. 

This study showed that meaningful consensus partitions for the entire data set of objects 

emerge from clusterings of bootstrap and subsamples of small size. Empirical studies 

were conducted on various simulated and real data sets for different consensus functions, 

number of partitions in the combination and number of clusters in each component, for 

both bootstrap (with replacement) and subsampling (without replacement). The results 

demonstrate that there is a trade-off between the number of clusters per component and 

the number of partitions, and the sample size of each partition needed in order to perform 

the combination process converges to an optimal error rate.  

The bootstrap technique was recently applied in (Dudoit & Fridlyand, 2003; Fisher 

& Buhmann, 2003; Monti et al., 2003) to create a diversity in clusterings ensemble. 

However, our work extends the previous studies by using a more flexible subsampling 

algorithm for ensemble generation. We also provided a detailed comparative study of 

several consensus techniques. The challenging points of using resampling techniques for 

maintaining diversity of partitions were discussed in this chapter. We showed that there 

exists a critical fraction of data such that the structure of entire data set can be perfectly 

detected. Subsamples of small sizes can reduce costs and measurement complexity for 

many explorative data mining tasks with distributed sources of data.  

We have extended clustering ensemble framework by adaptive data sampling 

mechanism for generation of partitions. We dynamically update sampling probability to 

focus on more uncertain and problematic points by on-the-fly computation of clustering 
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consistency. Empirical results demonstrate improved clustering accuracy and faster 

convergence as a function of the number of partitions in the ensemble. 

Further study of alternative resampling methods, such as the balanced (stratified) and 

recentered bootstrap methods are critical for more generalized and effective results. This 

work has bee published in (Minaei et al., 2004a; Minaei et al. 2004b, Topchy et al. 2004). 
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Chapter 6 Association Analysis in LON-CAPA  

 

A key objective of data mining is to uncover the hidden relationships among the 

objects in a data set. Web-based educational technologies allow educators to study how 

students learn and which learning strategies are most effective. Since LON-CAPA 

collects vast amounts of student profile data, data mining and knowledge discovery 

techniques can be applied to find interesting relationships between attributes of students, 

assessments, and the solution strategies adopted by students. This chapter focuses on the 

discovery of interesting contrast rules, which are sets of conjunctive rules describing 

interesting characteristics of different segments of a population. In the context of web-

based educational systems, contrast rules help to identify attributes characterizing 

patterns of performance disparity between various groups of students.   We propose a 

general formulation of contrast rules as well as a framework for finding such patterns. 

We apply this technique to the LON-CAPA system. 

6.1   Introduction  

This chapter investigates methods for finding interesting rules based on the 

characteristics of groups of students or assignment problems. More specifically, our 

research is guided and inspired by the following questions: Can we identify the different 

groups of students enrolled in a particular course based on their demographic data? 

Which attribute(s) best explain the performance disparity among students over different 
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sets of assignment problems? Are the same disparities observed when analyzing student 

performance in different sections or semesters of a course?  

We address the above questions using a technique called contrast rules. Contrast 

rules are sets of conjunctive rules describing important characteristics of different 

segments of a population. Consider the following toy example of 200 students who 

enrolled in an online course. The course provides online reading materials that cover the 

concepts related to assignment problems. Students may take different approaches to solve 

the assignment problems. Among these students, 109 students read the materials before 

solving the problems while the remaining 91 students directly solve the problems without 

reviewing the materials. In addition, 136 students eventually passed the course while 64 

students failed. This information summarized in a 2 × 2 contingency table as shown in 

Table 6.1. 

Table  6.1   A contingency table of student success vs. study habits for an online 
course 

 Passed Failed Total
Review materials  95 14 109 

Do not review  41 50 91 
Total 136 64 200 

 

The table shows that there are interesting contrasts between students who review the 

course materials before solving the homework problems and students who do not review 

the materials. The following contrast rules can be induced from the contingency table: 

Review materials⇒ Passed,               s = 47.5%,     c = 87.2% 

Review materials⇒ Failed,                 s =  7.0%,    c = 12.8% 

Figure  6.1  A contrast rule extracted from Table 6.1 
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where s and c are the support and confidence of the rules (Agrawal et al., 1993). 

These rules suggest that students who review the materials are more likely to pass the 

course. Since there is a large difference between the support and confidence of both rules, 

the observed contrast is potentially interesting. Other examples of interesting contrast 

rules obtained from the same contingency table are shown in Figures 6.2 and 6.3.  

Passed⇒  Review materials,                    s = 47.5%,           c = 69.9% 

Failed ⇒  Review materials,                    s =  7.0%,            c =  15.4% 

  Figure  6.2  A contrast rule extracted from Table 6.1 

Passed⇒  Review materials,                    s =  47.5%,          c = 69.9% 

Passed⇒  Do not review,                         s = 20.5%,           c = 30.1% 

Figure  6.3  A contrast rule extracted from Table 6.1 

Not all contrasting rule pairs extracted from Table 6.1 are interesting, as the example 

in Figure 6.4 shows. 

Do not review ⇒ Passed,                       s = 20.5%,            c = 45.1% 

Do not review ⇒ Failed,                        s = 25.0%,            c = 54.9% 

Figure  6.4  A contrast rule extracted from Table 6.1 

The above examples illustrate some of the challenging issues concerning the task of 

mining contrast rules: 

1.  There are many measures applicable to a contingency table. Which 

measure(s) yield the most significant/interesting contrast rules among 

different groups of attributes? 
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2. Many rules can be extracted from a contingency table. Which pair(s) of rules 

should be compared to define an interesting contrast? 

This chapter presents a general formulation of contrast rules and proposes a new 

algorithm for mining interesting contrast rules. The rest of this chapter is organized as 

follows: Section 6.2 provides a brief review of related work. Section 6.3 offers a formal 

definition of contrast rules. Section 6.4 gives our approach and methodology to discover 

the contrast rules.  Section 6.5 describes the LON-CAPA data model and an overview of 

our experimental results.  

6.2   Background 

In order to acquaint the reader with the use of data mining in online education, we 

present a brief introduction of association analysis and measures for evaluating 

association rules. Next, we explain the history of data mining in web-based educational 

systems. Finally, we discuss previous work related to contrast rules. 

6.2.1 Association analysis 

Let I = {i1, i2, …, im} be the set of all items and T = {t1, t2, …, tN} the set of all 

transactions where m is the number of items and N is the number of transactions. Each 

transaction tj is a set of items such that tj ⊆ I. Each transaction has a unique identifier, 

which is referred to as TID. An association rule is an implication statement of the form X 

⇒ Y, where X ⊂ I, Y ⊂ I, and X and Y are disjoint, that is, X ∩ Y = ∅. X is called the 

antecedent while Y is called the consequence of the rule (Agrawal et al., 1993; Agrawal 

& Srikant, 1994).  
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Support and confidence are two metrics, which are often used to evaluate the quality 

and interestingness of a rule. The rule X ⇒ Y has support, s, in the transaction set, T, if 

s% of transactions in T contains YX U . The rule has confidence, c, if c% of 

transactions in T that contain X also contains Y. Formally, support is defined as shown in 

Eq. (6.1), 

where N is the total number of transactions, and confidence is defined in Eq. (6.2). 

Another measure that could be used to evaluate the quality of an association rule is 

presented in Eq. (6.3).  

This measure represents the fraction of transactions that match the left hand side of a 

rule.  

Techniques developed for mining association rules often generate a large number of 

rules, many of which may not be interesting to the user. There are many measures 

proposed to evaluate the interestingness of association rules (Freitas, 1999; Meo, 2003). 

Silberschatz and Tuzhilin (1995) suggest that interestingness measures can be categorized 

into two classes: objective and subjective measures.  

An objective measure is a data-driven approach for evaluating interestingness of 

rules based on statistics derived from the observed data. In the literature different 

N
YXsYXs )()( U

=⇒ , (6.1)
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objective measures have been proposed (Tan et al., 2004). Examples of objective 

interestingness measure include support, confidence, correlation, odds ratio, and cosine.  

Subjective measures evaluate rules based on the judgments of users who directly 

inspect the rules (Silberschatz & Tuzhilin, 1995). Different subjective measures have 

been addressed to discover the interestingness of a rule (Silberschatz & Tuzhilin, 1995). 

For example, a rule template (Fu & Han, 1995) is a subjective technique that separates 

only those rules that match a given template. Another example is neighborhood-based 

interestingness (Dong & Li, 1998), which defines a single rule’s interestingness in terms 

of the supports and confidences of the group in which it is contained.  

6.2.2  Data mining for online education systems 

Recently, several researchers have worked on the application of data mining to 

examine or classify students’ problem-solving approaches within web-based educational 

systems. For example, we previously developed tools for predicting the student 

performance with respect to average values of student attributes versus the overall 

problems of an online course (Minaei et al., 2003). Zaïane (2001) suggested the use of 

web mining techniques to build an agent that recommends on-line learning activities in a 

web-based course. Ma et al. (2000) focused on one specific task of using association rule 

mining to select weak students for remedial classes. This previous work focused on 

finding association rules with a specific rule consequent (i.e. a student is weak or strong). 

Herein, we propose a general formulation of contrast rules as well as a framework for 

finding such patterns.  
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6.2.3  Related work 

An important goal in data mining is the discovery of major differences among 

segments of population. Bay and Pazzani (2001) introduced the notion of contrast sets as 

a conjunction of attributes and values that differ “meaningfully” in their distribution 

across groups. They used a chi-square test for testing the null hypothesis that contrast-set 

support is equal across all groups. They developed the STUCCO (Search and Testing for 

Understandable Consistent Contrast) algorithm to find significant contrast sets. Our work 

represents a general formulation for contrast rules using different interestingness 

measures. We show that alternative measures allow for different perspectives on the 

process of finding interesting rules.  

 Liu et al. (2001) have also used a chi-square test of independence as a principal 

measure for both generating the association rules and identifying non-actionable rules.  

Below, we briefly discuss the chi-square test of independence and one of its 

shortcomings. 

Chi-square testing is used as a method for verifying the independence or correlation 

of attributes. The chi-square test compares observed frequencies with the corresponding 

expected frequencies. The greater the difference between observed and expected 

frequencies, the greater is the power of evidence in favor of dependence and relationship. 

Let CT be a contingency table with K rows and L columns. The chi-square test for 

independence is shown in Eq. (6.4) where 1≤i≤K, and 1≤j≤L, and degree of freedom is 

(K-1)(L-1).  

 (6.4) ∑ ∑
−

=
i j ij
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However, a drawback of this test is that the 2χ  value is not invariant under the row-

column scaling property (Tan et al., 2004). For example, consider the contingency table 

shown in Table 6.2(a). If 2χ is higher than a specific threshold (e.g. 3.84 at the 95% 

significance level and degree of freedom 1), we reject the independence assumption. The 

chi-square value corresponding to Table 6.2(a) is equal to 1.82. Therefore, the null 

hypothesis is accepted. Nevertheless, if we multiply the values of that contingency table 

by 10, a new contingency table is obtained as shown in Table 6.2(b). The 2χ value 

increases to 18.2 (>3.84). Thus, we reject the null hypothesis. We expect that the 

relationship between gender and success for both tables as being equal, even though the 

sample sizes are different. In general, this drawback shows that 2χ  is proportional to N. 

Table  6.2 A contingency table proportional to table 6.1 

(a)                                                                                       (b) 
 Passed Failed Total   Passed Failed Total 

Male 40 49 89  Male 400 490 890 
Female 60 51 111  Female 600 510 1110 
Total 100 100 200  Total 1000 1000 2000 

6.3   Contrast Rules 

In this section, we introduce the notion of contrast rules. Let A and B be two itemsets 

whose relationship can be summarized in a 2×2 contingency table as shown in Table 6.3. 

Table  6.3   A contingency table for the binary case 

 B B  Total 
A f11 f12 f1+ 
A  f21 f22 f2+ 

Total f+1 f+2 N 
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Let Ω be a set of all possible association rules that can be extracted from such a 

contingency table (Figure 6.5).  

BA ⇒ , BA ⇒ ,  BA ⇒ ,  BA ⇒ , AB ⇒ ,  AB ⇒ , AB ⇒ ,   AB ⇒  

Figure  6.5   Set of all possible association rules for Table 6.3. 

We assume that B is a target variable and A is a conjunction of explanatory 

attributes. Let µ be a set of measures that can be applied to a rule or contingency table. 

Examples of such measures include support, confidence, chi-square, odds ratio, 

correlation, cosine, Jaccard, and interest (Tan et al., 2004). Below we provide a formal 

definition of “contrast rule.” 

 

Definition (General Formulation of Contrast Rules):  

A contrast rule, cr, is a 4-tuple <br, υ(br), M, ∆> where:  

1. br Ω⊂ , is the base rule, 

2. υ(br) Ω⊂  is a neighborhood to which the base rule br is compared, 

3. M=<mbase, mneighbor> is an ordered pair of measures where mbase, mneighbor  ∈ µ, and 

mbase measures the rules in br and mneighbor measures the rules in υ(br), 

4. ∆(mbase(br), mneighbor(υ(br))) is a comparison function between mbase(r) and 

mneighbor(υ(br)). 

A contrast rule, cr, is interesting if and only if ∆(mbase(br), mneighbor(υ(br))) ≥ σ, 

where σ is  a user defined threshold, which implies that there is a large difference 

between br and its neighborhood with respect to M. 

Figure  6.6    Formal definition of a contrast rule 
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As shown in Figure 6.6, the contrast rule definition is based on a paired set of rules, 

base rule br and its neighborhood υ(br). The base rule is a set of association rules with 

which a user is interested in finding contrasting association rules. Below are some 

examples that illustrate the definition. 

 

Example 1:  cr1 (Difference of confidence) 

The first type of contrast rules examines the difference between rules 

BA⇒ and BA ⇒ . An example of this type of contrast was shown in Figure 6.1. Let 

confidence be the selected measure for both rules. Let absolute difference be the 

comparison function. We can summarize this type of contrast as follows: 

 br: }{ BA ⇒  

 υ(r): }{ BA ⇒  

 M: <confidence, confidence> 

 ∆: absolute difference  

 

The evaluation criterion for this example is shown in Eq. 6.5. This criterion can be 

used for ranking different pairs of contrast rules 

 

 

where fij corresponds to the values in the i-th row and j-th column of Table 6.3.  

Since c( BA ⇒ ) + c( BA⇒ ) = 1, therefore,  

∆ = | c(r) – c(υ(r)) |  
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∆  =  | c( BA⇒ ) – c( BA⇒ ) |  

     =  | 2c( BA⇒ ) –1 | 

    ∝ c( BA⇒ ). 

Thus, the standard confidence measure is sufficient to detect an interesting contrast of 

this type. 

 

Example 2:  cr2 (Difference of proportion) 

An interesting contrast could be considered between rules AB ⇒  and AB ⇒ . An 

example of this contrast was shown in Figure 6.2. Once again, let confidence be the 

selected measure for both rules. Let absolute difference be the comparison function. We 

can summarize this type of contrast as follows: 

 br: }{ AB ⇒  

 υ(br): }{ AB⇒  

 M: <confidence, confidence> 

 ∆: absolute difference 

The evaluation criterion for this example is shown in Eq. 6.6, where ∆ is defined as 

follows: 

 

 

where  ρ, is the rule proportion (Agresti, 2002) and is defined in Eq. 6.7. 

∆ = | c(r) – c (υ(r)) |  

    = | c( AB ⇒ ) – c ( AB ⇒ ) | 
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Example 3:  cr3 (Correlation and Chi-Square) 

Correlation is a broadly used statistical measure for analyzing the relationship 

between two variables. The correlation between A and B in Table 6.3 is measured as 

follows:  

 
(6.8)

 

The correlation measure compares the contrast between the following set of base rules 

and their neighborhood rules: 

 br is { BA ⇒ , AB ⇒ , BA ⇒ , AB ⇒ } 

 υ(br) is { BA ⇒ , AB ⇒ , BA ⇒ , AB ⇒ } 

 M: <confidence, confidence>, 

 ∆: The difference in the square root of confidence products (see Eq. 6.9). 

 (6.9) 

 

where c1, c2, c3, c4, c5, c6, c7, and c8 correspond to )( BAc ⇒ , )( ABc ⇒ , )( BAc ⇒ , 

)( ABc ⇒ , )( BAc ⇒ , )( ABc ⇒ , )( BAc ⇒ , and )( ABc ⇒  respectively. Eq. 6.10 is obtained 

by expanding Eq. 6.9.   

 

 
(6.10) 

2211

21122211

++++

−
=

ffff
ffffcorr

87654321 cccccccc −=∆

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

)(
)(

BP
BAP

AP
BAP

BP
BAP

AP
BAP

BP
BAP

AP
BAP

BP
ABP

AP
ABP

−=∆



 

 164

 

 

Eq. 6.11 is the correlation between A and B as shown in Eq. 8. Chi-square measure is 

related to correlation in the following way:  

Ncorr
2χ=  (6.12)

 

Therefore, both measures are essentially comparing the same type of contrast.  

 

Contrast rules and interestingness measures 

Different measures have different perspectives on finding interesting rules. 

Specifically, each measure defines a base rule and a neighborhood of rules from which 

interesting contrast rules can be detected. In our proposed approach a user can choose a 

measure and detect the corresponding contrast rules. In addition, the user has flexibility 

to choose a base rule/attribute according to what he or she is interested in. Then he or she 

selects the neighborhood rules as well as the measures to detect the base rule and its 

neighborhood. This is similar to rule template approaches (see 6.2.1). We implemented 

examples 1-3 for LON-CAPA data sets, which will be explained in section 6.5.  

6.4   Algorithm 

In this section we propose an algorithm to find surprising and interesting rules based 

on the characteristics of different segments of students/problems. The difficulty with 
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algorithms such as Apriori is that when the minimum-support is high, we miss many 

interesting, but infrequent patterns. On the other hand if we choose a minimum-support 

that is too low the Apriori algorithm will discover so many rules that finding interesting 

ones becomes difficult.  

 

Mining Contrast Rules (MCR) Algorithm: 
 
Input: D – Input set of N transactions 
B – Target variable, the basis of interesting contrasts 
σ – Minimum (very) low support  
m – A measure for ranking the rules  
k – Number of the most interesting rules  
Divide data set D based on the values of the target variable 
foreach  j in B 
     Select D(j), a subset of transactions including j 
     Find the set of closed frequent itemsets, L(j) within D(j) 
     foreach  )( jL∈l  
          Generate rule j⇒l  
          Compute measure )( jm ⇒l  
     end 
 end 
Find common rules among the different groups of rules 
foreach  br and υ(br) pair compute difference in measures, ∆  
Sort the rules with respect to ∆ 
Select top k rules 
return R 

Figure  6.7  Mining Contrast Rules (MCR) algorithm for discovering interesting 
candidate rules 

In order to employ the MCR algorithm, several steps must be taken. During the 

preprocessing phase, we remove items whose support is too high. For example, if 95% of 

students pass the course, this attribute will be removed from the itemsets so that it does 

not overwhelm other, more subtle rules. Then we must also select the target variable of 

the rules to be compared. This allows the user to focus the search space on subjectively 

interesting rules. If the target variable has C distinct values, we divide the data set, D, into 
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C disjoint subsets based on the elements of the target variable, as shown in Figure 6.7. 

For example, in the case where gender is the target variable, we divide the transactions 

into male and female subsets to permit examination of rule coverage.  

Using Borgelt’s implementation13 of the Apriori algorithm (version 4.21), we can 

find closed itemsets employing a simple filtering approach on the prefix tree (Borgelt, 

2003). A closed itemset is a set of items for which none of its supersets have exactly the 

same support as itself. The advantage of using closed frequent itemsets for our purposes 

is that we can focus on a smaller number of rules for analysis, and larger frequent 

itemsets, by discarding the redundant supersets.  

We choose a very low minimum support to obtain as many frequent itemsets as is 

possible. Using perl scripts, we find the common rules between two contrast subsets. 

Finally, we rank the common rules with all of the previously explained measures, and 

then the top k rules of the sorted ranked-rules are chosen as a candidate set of interesting 

rules. Therefore an important parameter for this algorithm is minimum support, σ; the 

lower the σ, the larger the number of common rules. If the user selects a specific ranking 

measure, m, then the algorithm will rank the rules with respect to that measure.   

6.5   Experiments 

In this section we first provide a general model for data attributes, data sets and their 

selected attributes, and then explain how we handle continuous attributes. Finally, we 

discuss our results and experimental issues. 

                                                 

13 The code for this program is available at http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html.  
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6.5.1  Data model 

In order to better understand the interactions between students and the online 

educational system, a model is required to analyze the data.  Ideally, this model would be 

both descriptive and predictive in nature.  

As shown in Figure 6.8, each student is characterized by a set of attributes which are 

static for any particular analysis (GPA, gender, ethnicity, etc.) and can be easily 

quantized. The u-tuple ( )1(
iS , )2(

iS , …, )(u
iS ) describes the characteristics of the i-th 

student. The set of problems is determined by the scope of the analysis – at this time, 

single courses over individual terms, but with future possibilities for multi-term analysis 

– and characterized by a set of attributes, some of which are fixed (Bloom’s taxonomic 

categorization, content type, simulation-dependent, etc.). The v-tuple ( )1(
jP , )2(

jP , …, 

)(v
jP ) describes the characteristics of the j-th problem.    

 

 Figure  6.8  Attribute mining model, Fixed students’ attributes, Problem 
attributes, and Linking attributes between students and problem 
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The interaction of these two sets becomes a third space where larger questions can be 

asked. The k-tuple ( )1(
ijSP , )2(

ijSP , …, )(k
ijSP ) describes the characteristics of the i-th 

student linking to the  j-th problem. LON-CAPA records and dynamically organizes a 

vast amount of information on students' interactions with and understanding of these 

materials.  

The model is framed around the interactions of the two main sources of interpretable 

data: students and assessment tasks (problems). Figure 6.9 shows the actual data model, 

which is frequently called an entity relationship diagram (ERD) since it depicts categories 

of data in terms of entities and relationships. 

BELONGS TO

GENERATES
HAS

EN ROLLS IN

STUDENT
Student_ID
Name
Birth date
Address
Ethnicit y
GPA
Lt_GPA
Department
Gender

ACTIVITY LOG
Stu_ID_Crs_ID_Prb_ID
# of  Tries
Success
Time
Grade

COURSE
Cousre_ID
Name
Schedule
Credits

ASSESSMENT TASK
Problem_ID
Open date
Due date
Ty pe
Degree of  Dif f iculty
Degree of  Discrimination

 
Figure  6.9   Entity Relationship Diagram for a LON-CAPA course 
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The attributes selected for association analysis are divided into four groups within 

the LON-CAPA system: 

a) Student attributes: which are fixed for any student. Attributes such as Ethnicity, 

Major, and Age were not included in the data out of necessity – the focus of this work is 

primarily on the LON-CAPA system itself, so the demographics of students is less 

relevant. As a result, the following three attributes are included: 

GPA: is a continuous variable that is discretized into eight intervals between zero and 

four with a 0.5 distance.  

Gender: is a binary attribute with values Female and Male. 

LtGPA (Level Transferred (i.e. High School) GPA): measured the same as GPA 

 

b) Problem attributes: which are fixed for any problem. Among several attributes for 

the problems we selected the four following attributes: 

DoDiff (degree of difficulty): This is a useful factor for an instructor to determine 

whether a problem has an appropriate level of difficulty. DoDiff is computed by the total 

number of students’ submissions divided by the number of students who solved the 

problem correctly.  Thus, DoDiff is a continuous variable in the interval [0,1] which is 

discretized into terciles of roughly equal frequency: easy, medium, and hard.  

DoDisc (degree of discrimination): A second measure of a problem’s usefulness in 

assessing performance is its discrimination index. It is derived by comparing how 

students whose performance places them in the top quartile of the class score on that 

problem compared to those in the bottom quartile. The possible values for DoDisc vary 

from –1 to +1.  A negative value means that students in the lower quartile scored better 
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on that problem than those in the upper. A value close to +1 indicates the higher 

achieving students (overall) performed better on the problem. We discretize this 

continuous value into terciles of roughly equal frequency: negatively-discriminating, non-

discriminating, and positively-discriminating. 

AvgTries (average number of tries): This is a continuous variable which is 

discretized into terciles of roughly equal frequency: low, medium, and high. 

c) Student/Problem interaction attributes: We have extracted the following attributes 

per student per problem from the activity log: 

Succ: Success on the problem (YES, NO) 

Tries: Total number of attempts before final answer.  

Time: Total time from first attempt until the final answer is derived. 

d) Student/Course interaction attributes: We have extracted the following attributes 

per student per course from the LON-CAPA system. 

Grade: Student’s Grade, the nine possible labels for grade (a 4.0 scale with 0.5 

increments). An aggregation of “grade” attributes is added to the total attribute list.  

Pass-Fail: Categorize students with one of two class labels: “Pass” for grades above 

2.0, and “Fail” for grades less than or equal to 2.0. 

6.5.2   Data sets 

For this research we selected three data sets from the LON-CAPA courses as shown 

in Table 6.4. For example the second row of the table shows that BS111 (Biological 

Science: Cells and Molecules) integrated 235 online homework problems, and 382 

students used LON-CAPA for this course. BS111 had an activity log with approximately 

239 MB of data. Though BS111 is a larger course than LBS271 (first row of the table), a 
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physics course, it is much smaller than CEM141 (third row), general chemistry I. This 

course had 2048 students enrolled and its activity log exceeds 750MB, corresponding to 

more than 190k student/problem interactions when students attempting to solve 

homework problems.  

Table  6.4  Characteristics of three MSU courses which used LON-CAPA in fall 
semester 2003 

Data set Course Title # of 
Students 

# of 
Problems

Size of 
Activity log 

# of  
Interactions 

LBS 271 Physics_I 200 174 152.1 MB 32,394 
BS 111 BiologicalScience 382 235 239.4 MB 71,675 

CEM141 Chemistry_I  2048 114 754.8 MB 190,859 
 

For this chapter we focus on two target variables, gender and pass-fail grades, in 

order to find the contrast rules involving these attributes. A constant difficulty in using 

any of the association rule mining algorithms is that they can only operate on binary data 

sets. Thus, in order to analyze quantitative or categorical attributes, some modifications 

are required – binarization – to partition the values of continuous attributes into discrete 

intervals and substitute a binary item for each discretized item. In this experiment, we 

mainly use equal-frequency binning for discretizing the attributes.   

6.5.3  Results 

This section presents some examples of the interesting contrast rules obtained from 

the LON-CAPA data sets. Since our approach is an unsupervised case, it requires some 

practical methods to validate the process. The interestingness of a rule can be subjectively 

measured in terms of its actionability (usefulness) or its unexpectedness (Silberschatz & 
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Tuzhilin, 1995; Piatetsky-Shapiro & Matheus, 1994; Liu et al., 1999; Silberschatz & 

Tuzhilin, 1996).    

One of the techniques for mining interesting association rules based on 

unexpectedness. Therefore, we divide the set of discovered rules into three categories:  

1. Expected and previously known: This type of rule confirms user beliefs, and 

can be used to validate our approach. Though perhaps already known, many 

of these rules are still useful for the user as a form of empirical verification of 

expectations.  For our specific situation (education) this approach provides 

opportunity for rigorous justification of many long-held beliefs. 

2. Unexpected: This type of rule contradicts user beliefs. This group of 

unanticipated correlations can supply interesting rules, yet their 

interestingness and possible actionability still requires further investigation. 

3. Unknown: This type of rule does not clearly belong to any category, and 

should be categorized by domain-specific experts. For our situations, 

classifying these complicated rules would involve consultation with not only 

the course instructors and coordinators, but also educational researchers and 

psychologists. 

The following rule tables present five examples of the extracted contrast rules 

obtained using our approach. Each table shows the coded contrast rule and the “support” 

and “confidence” of that rule. Abbreviations are used in the rule code, and are 

summarized as follows: Succ stands for success per student per problem, LtGPA stands 

for transfer GPA, DoDiff stands for degree of difficulty of a particular problem, and 
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DoDisc stands for degree of discrimination of a problem. In our experiments, we used 

three measures to rank the contrast rules: 

6.5.3.1 Difference of confidences 

The focus of this measure is on comparing the confidences of the contrast rules 

( BA ⇒  and BA ⇒ ). Therefore, top rules found by this measure have a high value of 

confidence ratio (c1/c2). Contrast rules in Table 6.5 suggest that students in LBS 271 who 

are successful in homework problems are more likely to pass the course, and this comes 

with a confidence ratio c1/c2=12.7. 

Table  6.5   LBS_271 data set, difference of confidences measure 

Contrast Rules Support & Confidence 
(Succ=YES) ==> Passed (s=86.1%, c=92.7%) 
(Succ=YES) ==> Failed (s=6.8%, c=7.3%) 

 

 This rule implies a strong correlation among the student’s success in homework 

problems and his/her final grade. Therefore, this rule belongs to the first category; it is a 

known, expected rule that validates our approach. 

Table  6.6   CEM_141 data set, difference of confidences measure 

Contrast Rules Support & Confidence 
(Lt_GPA=[1.5,2)) ==> Passed (s=0.6%, c=7.7%) 
(Lt_GPA=[1.5,2)) ==> Failed (s=7.1%, c=92.3%) 

 

Contrast rules in Table 6.6 could belong to the first category as well; students with 

low transfer GPAs are more likely to fail CEM 141 (c2/c1=12). This rule has the 

advantage of actionability; so, when students with low transfer GPAs enroll for the 

course, the system could be designed to provide them with additional help.  
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6.5.3.2 Difference of Proportions 

The focus of this measure is on comparing the rules ( AB ⇒   and  AB⇒ ). Contrast 

rules in Table 6.7 suggest that historically strong students that take long periods of time 

between their first (incorrect) solution attempt and subsequent attempts tend to be female. 

Though this rule may belong to the second category, there is some empirical evidence 

that female students have better performances over long periods of time than males 

(Kashy D.; 2001). We found this interesting contrast rules using the difference of 

confidences to discover the top significant rules for BS 111. Though the support of the 

rules is low, that is the result would be of an interesting rule with low-support.  

Table  6.7   BS_111 data set, difference of proportion measure 

Contrast Rules Support & Confidence 
Male  ==>  (Lt_GPA=[3.5,4] & Time>20_hours) (s=0.1%, c=26.3%) 
Female ==>(Lt_GPA=[3.5,4] & Time>20_hours) (s=0.6%, c=89.7%) 

 

6.5.3.3 Chi-square 

It is a well-known condition in chi-square testing for contingency tables that cell 

expected values need to be above 5 to guarantee the veracity of the significance levels 

obtained (Agresti, 2002). We do pruning if this limitation is violated in some cases, and 

this usually happens when the expected support corresponding to f11 or f12 in Table 6.3 is 

low.  

Table  6.8   CEM_141 data set, chi-square measure 

Contrast Rules Support & Confidence 
(Lt_GPA=[3,3.5) & Sex=Male & Tries=1) ==> Passed (s=4.4%, c=82.7%) 
(Lt_GPA=[3,3.5) & Sex=Male & Tries=1) ==> Failed (s=0.9%, c=17.3%) 
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Contrast rules in Tables 6.8 suggest that students with transfer GPAs in the range of 

3.0 to 3.5 that were male and answered homework problems on the first try were more 

likely to pass the class than to fail it. (c1/c2=4.8). This rule could belong to the second 

category. We found this rule using the chi-square measure for CEM 141.  

Table  6.9  LBS_271 data set, difference of confidences measure 

Contrast Rules Support & Confidence 
(DoDiff=medium & DoDisc=non_discriminating 

& Succ=YES & Tries=1) 
 ==> Passed 

(s=28.9%, c=94.1%) 

(DoDiff=medium & DoDisc=non_discriminating 
& Succ=YES & Tries=1) 

==> Failed 
(s=1.8%, c=6.9%) 

 

Contrast rules in Table 6.9 show more complicated rules for LBS 271 using 

difference of proportion (c1/c2=15.9); these rules belong to the third (unknown) category 

and further consultation with educational experts is necessary to determine whether or not 

they are interesting. 

6.6 Conclusion 

LON-CAPA servers are recording students’ activities in large logs. We proposed a 

general formulation of interesting contrast rules and developed an algorithm to discover a 

set of contrast rules investigating three different statistical measures. This tool can help 

instructors to design courses more effectively, detect anomalies, inspire and direct further 

research, and help students use resources more efficiently. An advantage of this 

developing approach is its broad functionality in many data mining application domains. 

Specifically, it allows for contrast rule discovery with very low minimum support, 
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therefore permitting the mining of possibly interesting rules that otherwise would go 

unnoticed.  

More measurements tend to permit discovery of higher coverage rules. A 

combination of measurements should be employed to find out whether this approach for 

finding more interesting rules can be improved. In this vein, we plan to extend our work 

to analysis of other possible kinds of contrast rules. This work has been published in 

(Minaei-Bidgoli et al., 2004g). 
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Chapter 7 Summary 

This dissertation addresses the issues surrounding the use of a data mining 

framework within a web-based educational system. We introduce the basic concepts of 

data mining as well as information about current online educational systems, a 

background on Intelligent Tutoring Systems, and an overview of the LON-CAPA system. 

A body of literature has emerged, dealing with the different problems involved in data 

mining for performing classification and clustering upon web-based educational data.  

This dissertation positions itself to extend data mining research into web-based 

educational systems – a new and valuable application. Results of data mining tools help 

students use the online educational resources more efficiently while allowing instructors, 

problem authors, and course coordinators to design online materials more effectively.   

7.1 Summary of the work 

This dissertation provides information about the structure of LON-CAPA data, data 

retrieval processes, and representation of student statistical information including 

problem and solution strategies. We explain how we provide assessment tools in LON-

CAPA on various aspects of teaching and learning. The LON-CAPA system is used for 

both formative and summative assessment. Feedback from numerous sources has 

improved the educational materials considerably, a continuous and cyclic task which data 

mining has the opportunity to impact. 
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7.1.1  Predicting Student Performance 

The first aim of this dissertation is to provide a data mining tool for classifying 

student characteristics based on features extracted from their logged data. We can use this 

tool to predict the group to which any individual student will belong with reasonable 

precision. Eventually, this information will help students use course resources better, 

based on the usage of that resource by other students in similar groups. Four tree-based 

(C5.0, CART, Quest, and Cruise) and five non tree-based classifiers (k-nearest neighbor, 

Bayesian, Parzen window and neural network) are used to segregate student data. Using a 

combination of multiple classifiers leads to a significant accuracy improvement for 

various LON-CAPA courses.  Weighting the features and using a genetic algorithm to 

minimize the error rate improves the prediction accuracy by at least 10% in all the cases 

tested.  

The successful implementation of student classification to predict their performance, 

demonstrates the merits of using the LON-CAPA data for pattern recognition in order to 

predict the students’ final grades based on features extracted from their homework data. 

We design, implement, and evaluate a series of pattern classifiers with various parameters 

in order to compare their performance in analyzing a real dataset from the LON-CAPA 

system.  

This approach is easily adaptable to different types of courses, different population 

sizes, and allows for different features to be analyzed. This work represents a rigorous 

application of known classifiers as a means of analyzing and comparing usage and 

performance of students who have taken a technical course that was partially/completely 

administered via the web.  
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7.1.2  Clustering ensembles 

A second objective of this research is to extend previous theoretical work regarding 

clustering ensembles with the goal of creating an optimal framework for categorizing 

web-based educational resources.  We propose non-adaptive and adaptive resampling 

schemes for the integration of multiple clusterings (independent and dependent). 

Experimental results show improved stability and accuracy for clustering structures 

obtained via bootstrapping, subsampling, and adaptive techniques. This study shows that 

meaningful consensus partitions for an entire data set of objects can emerge from 

clusterings of bootstrap (with replacement) and subsamples (without replacement) of 

small size.  

Empirical studies are conducted on several data sets for different consensus 

functions, number of partitions in the combination and number of clusters in each 

component. The results demonstrate that there is a trade-off between the number of 

clusters per component and the number of partitions, and that the sample size of each 

partition needed in order to perform the combination process converges to an optimal 

error rate. These improvements offer insights into specific associations within the data 

sets. The challenging points of using resampling techniques for maintaining the diversity 

of partitions are discussed. We show that a critical fraction of data exists such that the 

structure of an entire data set can be perfectly detected. Subsamples of small sizes can 

reduce computational costs and measurement complexity for many explorative data 

mining tasks with distributed sources of data. This empirical study also compares the 

performance of adaptive and non-adaptive clustering ensembles using different consensus 

functions on a number of data sets. By focusing attention on the data points with the least 
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consistent clustering assignments, one can better approximate the inter-cluster boundaries 

and improve clustering accuracy and convergence speed as a function of the number of 

partitions in the ensemble. The comparison of adaptive and non-adaptive approaches is a 

new avenue for research, and this study helps to pave the way for the useful application 

of distributed data mining methods. 

7.1.3   Interesting association rules 

Finally, this dissertation proposes techniques for discovering interesting associations 

between student attributes, problem attributes, and solution strategies. We develop an 

algorithm for the discovery of “interesting” association rules within a web-based 

educational system. The main focus is on mining interesting contrast rules, which are sets 

of conjunctive rules describing interesting characteristics of different segments within a 

population. In the context of web-based educational systems, contrast rules help to 

identify attributes characterizing patterns of performance disparity between various 

groups of students. This dissertation presents a general formulation of contrast rules as 

well as a new algorithm for mining interesting contrast rules.  

We address the issue of choosing different measures for the discovery of contrast 

rules. Different measures have different perspectives on finding interesting rules. 

Specifically, each measure defines a base rule and a neighborhood of rules from which 

interesting contrast rules can be detected. In our proposed approach a user can choose a 

measure and detect the corresponding contrast rules. In addition, the user has flexibility 

to choose a base rule/attribute according to what he or she is interested in. Then the user 

selects the neighborhood rules as well as the measures to detect the base rule and its 

neighborhood. 
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Examining these contrasts can improve the online educational systems for both 

teachers and students – allowing for more accurate assessment and more effective 

evaluation of the learning process. 

7.2  Future work 

There are several promising directions to extend the work presented in this thesis: 

1. Develop a tool to find the effects of different types of problems on student 

achievement.  These problems will be classified to find patterns in which students 

are successful. 

2. Develop techniques that apply student information in helping individuals to use 

resources more efficiently (recommendation system). As an example, the 

following suggestion might be made by the system: “You are about to start a test. 

Other students similar to you, who succeeded in this test, have also accessed 

Section 5 of Chapter 3. You did not. Would you like to access it now before 

attempting the test?” 

3. Find clusters of learners with similar browsing behavior, given students’ browsing 

data and course contents. Though the implications of this clustering are not 

completely known at this time, it seems a valid question amidst the other solid 

and useful applications of this work. 

4. Identify those students who are at risk of failure, especially in very large classes. 

This will help the instructor provide appropriate advising in a timely manner. 

5. Identify sequences of strategies that students use in solving homework problems.  

This may help in detecting anomalies in designed problems and assist instructors 

in developing more effective homework.  
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Appendix A:  Tree Classifiers Output 

 

C5.0 

Using C5.0 for classifying the students: This result shows the error rate in each fold 

in 10-fold cross-validation, and confusion matrix. 

In 2-classes (Passed, Failed)  

Fold            Rules      
----      ---------------- 
            No      Errors 
 
   0         9       18.2% 
   1         9       22.7% 
   2        12       27.3% 
   3         5       30.4% 
   4         8       17.4% 
   5         7       21.7% 
   6        10       13.0% 
   7         8       17.4% 
   8         4       17.4% 
   9         8       21.7% 
 
  Mean     8.0       20.7% 
SE       0.7        1.6% 
 
 

In 3-classes (High, Middle, Low) we got the following results: 

 
Fold        Decision Tree    
----      ----------------   
          Size      Errors   
 
   0         7       36.4% 
   1        12       45.5% 
   2         6       45.5% 
   3         7       47.8% 
   4        10       34.8% 
   5         9       34.8% 
   6         6       47.8% 
   7         8       43.5% 
   8        10       47.8% 
   9         9       47.8% 
 
  Mean     8.4       43.2% 
  SE       0.6        1.8% 
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In 9-classes we got the following results: 

Fold        Decision Tree    
----      ----------------   
          Size      Errors   
 
   0        57       81.8% 
   1        51       63.6% 
   2        55       63.6% 
   3        61       78.3% 
   4        48       73.9% 
   5        56       73.9% 
   6        58       69.6% 
   7        53       87.0% 
   8        56       78.3% 
   9        56       73.9% 
 
  Mean    55.1       74.4% 
  SE       1.2        2.4% 

 
 

           (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)    <-classified as 
          ----  ----  ----  ----  ----  ----  ----  ----  ---- 
                         1           1                            (a): class 1 
             1           3     2     2     2                      (b): class 2 
             1     2     7     6     2     7     3                (c): class 3 
                   4     2     5     2     4     3     3          (d): class 4 
                   2     5     3    12    11     8     2          (e): class 5 
                         7     5     9    15     9     7          (f): class 6 
                         4     6     3    15     5     8          (g): class 7 
                         1     1     7     3     2    14          (h): class 8 
                                                                  (i): class 9 

 
 
Here, there are a sample of rule sets resulted the from C5.0 in 3-class classification 
 



 

184

Rule 1: (8, lift 2.9) 
        FirstCorrect > 64 
        FirstCorrect <= 112 
        TotalCorrect > 181 
        AvgTries > 1270 
        TotalTimeSpent <= 87.87 
        Discussion <= 0 
        ->  class High  [0.900] 
 
Rule 2: (5, lift 2.8) 
        FirstCorrect > 93 
        FirstCorrect <= 99 
        TotalCorrect > 181 
        AvgTries <= 1270 
        Discussion <= 14 
        ->  class High  [0.857] 
 
Rule 3: (15/2, lift 2.7) 
        FirstCorrect <= 112 
        TotalCorrect > 181 
        Discussion > 0 
        Discussion <= 14 
        ->  class High  [0.824] 
 
Rule 4: (8/1, lift 2.6) 
        FirstCorrect <= 112 
        TotalCorrect > 174 
        TotalCorrect <= 180 
        AvgTries <= 1768 
        Discussion <= 0 
        ->  class High  [0.800] 
 
Rule 5: (3, lift 2.6) 
        FirstCorrect > 112 
        FirstCorrect <= 117 
        TotalCorrect > 180 
        TotalTimeSpent > 14.01 
        Discussion <= 1 
        ->  class High  [0.800] 
………… 
 
Rule 15: (3/1, lift 2.2) 
        FirstCorrect <= 112 
        TotalCorrect > 180 
        TotalCorrect <= 181 
        Discussion <= 0 
        ->  class Low  [0.600] 

 

 
Here, there are a sample of rule sets resulted the from C5.0 in 2-class classification 
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Rules: 
 
Rule 1: (158/25, lift 1.2) 
        TotalCorrect > 165 
        ->  class Passed  [0.838] 
 
Rule 2: (45/8, lift 1.1) 
        Discussion > 1 
        ->  class Passed  [0.809] 
 
Rule 3: (7, lift 3.2) 
        FirstCorrect <= 78 
        TotalCorrect <= 165 
        ->  class Failed  [0.889] 
 
Rule 4: (2, lift 2.7) 
        TotalCorrect <= 165 
        AvgTries > 669 
        Discussion > 1 
        Discussion <= 4 
        ->  class Failed  [0.750] 
 
Rule 5: (47/15, lift 2.4) 
        TotalCorrect <= 165 
        ->  class Failed  [0.673] 
 
Default class: Passed 
 
Evaluation on hold-out data (22 cases): 
                Rules      
          ---------------- 
            No      Errors 
             5    3(13.6%)   << 
 

 
 
And a sample of tree, which is produced by C5.0 in one of the folds in 3 classes: 
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TotalCorrect <= 165: 
:...AvgTries > 850: Low (13/2) 
:   AvgTries <= 850: 
:   :...Discussion > 2: 
:       :...TotalTimeSpent <= 20.57: Low (2) 
:       :   TotalTimeSpent > 20.57: Middle (3/1) 
:       Discussion <= 2: 
:       :...TotalTimeSpent > 22.63: Low (8) 
:           TotalTimeSpent <= 22.63: 
:           :...AvgTries <= 561: Low (7/1) 
:               AvgTries > 561: 
:               :...TotalCorrect > 156: Low (2) 
:                   TotalCorrect <= 156: 
:                   :...TotalCorrect <= 136: Low (3/1) 
:                       TotalCorrect > 136: Middle (6) 
TotalCorrect > 165: 
:...AvgTries <= 535: 
    :...TotalCorrect <= 177: Low (5) 
    :   TotalCorrect > 177: High (5/2) 
    AvgTries > 535: 
    :...FirstCorrect > 112: 
        :...TotalCorrect <= 172: Middle (6) 
        :   TotalCorrect > 172: 
        :   :...TotalCorrect > 180: Middle (38/13) 
        :       TotalCorrect <= 180: 
        :       :...TimeTillCorr <= 23.47: 
        :           :...TotalCorrect > 178: High (2) 
        :           :   TotalCorrect <= 178: 
        :           :   :...TotalCorrect <= 174: High (4/2) 
        :           :       TotalCorrect > 174: Middle (8/1) 
        :           TimeTillCorr > 23.47: 
        :           :...FirstCorrect > 129: Middle (2) 
        :               FirstCorrect <= 129: 
        :               :...TotalCorrect > 175: Low (7/1) 
        :                   TotalCorrect <= 175: 
        :                   :...FirstCorrect <= 118: Low (2) 
        :                       FirstCorrect > 118: High (2) 
        FirstCorrect <= 112: 
        :...TotalTimeSpent > 87.87: Middle (5/1) 
            TotalTimeSpent <= 87.87: 
            :...TotalCorrect <= 169: High (5/1) 
                TotalCorrect > 169: 
                :...TotalCorrect <= 174: Middle (8) 
                    TotalCorrect > 174: 
                    :...Discussion > 7: Middle (5/1) 
                        Discussion <= 7: 
                        :...TotalCorrect <= 177: High (5/1) 
                            TotalCorrect > 177: 
                            :...TotalCorrect <= 181: 
                                :...AvgTries <= 1023: High (3) 
                                :   AvgTries > 1023: Middle (9/2) 
                                TotalCorrect > 181: 
                                :...Discussion > 0: High (15/2) 
                                    Discussion <= 0: 
                                    :...FirstCorrect > 99: Middle (5/1) 
                                        FirstCorrect <= 99: 
                                        :...FirstCorrect > 89: High (7/1) 
                                            FirstCorrect <= 89: 
                                            :...AvgTries <= 1355: Middle (4) 
                                                AvgTries > 1355: [S1] 
 
Evaluation on hold-out data (22 cases): 
            Decision Tree    
          ----------------   
          Size      Errors   
            32    7(31.8%)   << 
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CART 

Some of CART report for 2-Classes using Gini criterion: 

 

 File: PHY183.XLS 

Target Variable: CLASS2 

Predictor Variables: FIRSTCRR, TOTCORR, TRIES, SLVDTIME, 

TOTTIME, DISCUSS 

Tree Sequence 

Tree 
Numbe

r 

Termin
al 

Nodes 

Cross-
Validated 

Relative Cost 

Resubstitution
Relative Cost 

Complexity 

1 23 0.873 ± 0.099 0.317 -1.000 
2 22 0.984 ± 0.104 0.317 1.00E-005 
3 15 1.016 ± 0.104 0.397 0.003 
4 9 0.762 ± 0.089 0.476 0.004 
5 7 0.778 ± 0.091 0.508 0.004 
6 5 0.841 ± 0.093 0.556 0.007 

7** 3 0.667 ± 0.090 0.619 0.009 
8 2 0.714 ± 0.088 0.683 0.018 
9 1 1.000 ± 6.73E-

005 
1.000 0.088 

   *  Minimum Cost 

   ** Optimal  

Classification tree topology for: CLASS2 
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Error Curve 
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Gains Data for 2 

No
de 

Cases 
Class 2 

% of 
Node 

Class 2 

% 
Class 2 

Cum %
Class 2 

Cum %
Pop 

% 
Pop 

Cases 
in Node 

Cum 
lift 

Lift 
Pop 

1 35 70.00 55.56 55.56 22.03 22.03 50 2.522 2.522 
2 7 70.00 11.11 66.67 26.43 4.41 10 2.522 2.522 
3 21 12.57 33.33 100.00 100.00 73.57 167 1.000 0.453 

 

Variable Importance  

Variable    
TOTCORR 100.00 ||||||||||||||||||||||||||||||||||||||||||

TRIES 56.32 ||||||||||||||||||||||| 
FIRSTCRR 4.58 | 
TOTTIME 0.91  

SLVDTIME 0.83  
DISCUSS 0.00  
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Misclassification for Learn Data 

Class N 
Cases

N Mis-
Classed

Pct
Error

Cost

1 164 18 10.98 0.11
2 63 21 33.33 0.33

 

 

 

Misclassification for Test Data 

Class N 
Cases

N Mis-
Classed

Pct
Error

Cost

1 164 21 12.80 0.13
2 63 21 33.33 0.33

 

 

Some of CART report for 3-Classes using Twoing criterion: (10-fold 

Cross-Validation): 

 

Tree Sequence 
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Tree 
Numbe

r 

Termin
al 

Nodes 

Cross-
Validated 

Relative Cost 

Resubstitution
Relative Cost 

Complexity 

1 42 0.802 ± 0.050 0.230 -1.000 
2 38 0.808 ± 0.050 0.236 0.001 
3 37 0.808 ± 0.050 0.238 0.001 
4 36 0.794 ± 0.050 0.242 0.003 
5 35 0.786 ± 0.050 0.247 0.003 
6 27 0.778 ± 0.050 0.289 0.004 
7 24 0.762 ± 0.050 0.311 0.005 
8 23 0.762 ± 0.050 0.319 0.005 
9 22 0.761 ± 0.050 0.327 0.005 
10 21 0.731 ± 0.049 0.336 0.006 
11 18 0.734 ± 0.049 0.366 0.007 
12 14 0.727 ± 0.049 0.407 0.007 
13 13 0.740 ± 0.049 0.418 0.007 
14 11 0.732 ± 0.049 0.444 0.009 

15** 10 0.694 ± 0.049 0.457 0.009 
16 8 0.720 ± 0.050 0.500 0.014 
17 6 0.743 ± 0.050 0.545 0.015 
18 5 0.741 ± 0.050 0.574 0.019 
19 4 0.728 ± 0.050 0.605 0.021 
20 3 0.745 ± 0.050 0.661 0.037 
21 2 0.758 ± 0.035 0.751 0.060 
22 1 1.000 ± 0.000 1.000 0.166 

 

Classification tree topology for: CLASS3 

 
Error Curve 
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Gains Data for 1 

No
de 

Cases 
Class 1 

% of 
Node 

Class 1 

% 
Class 1 

Cum %
Class 1 

Cum %
Pop 

% 
Pop 

Cases 
in Node 

Cum 
lift 

Lift 
Pop 

9 4 80.00 5.80 5.80 2.20 2.20 5 2.632 2.632 
2 4 80.00 5.80 11.59 4.41 2.20 5 2.632 2.632 
6 31 62.00 44.93 56.52 26.43 22.03 50 2.138 2.040 
4 8 57.14 11.59 68.12 32.60 6.17 14 2.090 1.880 
7 13 27.08 18.84 86.96 53.74 21.15 48 1.618 0.891 
5 1 12.50 1.45 88.41 57.27 3.52 8 1.544 0.411 
10 2 11.76 2.90 91.30 64.76 7.49 17 1.410 0.387 
8 2 11.11 2.90 94.20 72.69 7.93 18 1.296 0.366 
1 4 8.00 5.80 100.00 94.71 22.03 50 1.056 0.263 
3 0 0.00 0.00 100.00 100.00 5.29 12 1.000 0.000 
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Variable Importance  

Variable    
TOTCORR 100.00 ||||||||||||||||||||||||||||||||||||||||||

TRIES 40.11 |||||||||||||||| 
FIRSTCRR 24.44 |||||||||| 
TOTTIME 23.22 ||||||||| 

SLVDTIME 21.67 |||||||| 
DISCUSS 14.44 ||||| 

 

 

 

Misclassification for Learn Data 

 

Class N 
Cases

N Mis-
Classed

Pct
Error

Cost

1 69 22 31.88 0.32
2 95 34 35.79 0.36
3 63 15 23.81 0.24

 

 

 

Misclassification for Test Data 

 

Class N 
Cases

N Mis-
Classed

Pct
Error

Cost

1 69 35 50.72 0.51
2 95 52 54.74 0.55
3 63 21 33.33 0.33

 

Some of CART report for 9-Classes using Entropy criterion: (10-fold 

Cross-Validation) 

 



 

193

Different tree topologies for: CLASS-9 

 

 

 

 

 

 

 

Entropy    Gini     Twoing 

Descriptive Statistics in CART for 3-Classes 

 
   Variable             N         Mean           SD          Min          Max          
Sum  
 ----------------------------------------------------------------------------------------
--- 
 Overall 
   FIRSTCRR          227.00      106.242       20.462       47.000      150.000    
24117.000  
   TOTCORR           227.00      171.678       18.155       80.000      184.000    
38971.000  
   TRIES             227.00      977.987      450.898      265.000     3095.000   
222003.000   
   SLVDTIME          227.00       36.620       24.837        2.590      130.870     
8312.700    
   TOTTIME           227.00       37.948       25.434        3.000      130.870     
8614.170  
   DISCUSS           227.00        1.330        3.034        0.000       23.000      
302.000 
 
 CLASS3 = 1 
   FIRSTCRR           69.00      103.145       19.598       57.000      149.000     
7117.000 
   TOTCORR            69.00      179.290        7.900      141.000      184.000    
12371.000 
   TRIES              69.00     1088.406      439.742      487.000     2227.000    
75100.000  
   SLVDTIME           69.00       39.060       22.209        2.590       98.840     
2695.130  
   TOTTIME            69.00       39.764       22.797        3.000       99.200     
2743.720 
   DISCUSS            69.00        1.493        2.988        0.000       14.000      
103.000 
 
 CLASS3 = 2 
   FIRSTCRR           95.00      108.505       20.973       54.000      150.000    
10308.000  
   TOTCORR            95.00      175.453       12.412      118.000      184.000    
16668.000  
   TRIES              95.00      984.937      443.874      392.000     3095.000    
93569.000 
   SLVDTIME           95.00       36.866       27.353        4.100      130.870     
3502.240  
   TOTTIME            95.00       37.916       27.865        4.130      130.870     
3602.010 
   DISCUSS            95.00        1.537        3.596        0.000       23.000      
146.000 
 
 CLASS3 = 3 
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   FIRSTCRR           63.00      106.222       20.482       47.000      147.000     
6692.000 
   TOTCORR            63.00      157.651       24.763       80.000      184.000     
9932.000 
   TRIES              63.00      846.571      446.210      265.000     2623.000    
53334.000 
   SLVDTIME           63.00       33.577       23.605        4.870      107.100     
2115.330  
   TOTTIME            63.00       36.007       24.561        5.920      114.210     
2268.440  
   DISCUSS            63.00        0.841        1.953        0.000        9.000       
53.000 

 

 

 

 

 

A Sample of CART tree for 3-Classes using Entropy criterion: (10-fold 
Cross-validation) 
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QUEST 
  Summary of numerical variable: FirstCorr 

       Size        Obs        Min        Max       Mean         Sd 

        226        226  0.470E+02  0.150E+03  0.106E+03  0.204E+02 

   

  Summary of numerical variable: TotCorr 

       Size        Obs        Min        Max       Mean         Sd 

        226        226  0.960E+02  0.184E+03  0.172E+03  0.171E+02 

   

  Summary of numerical variable: AvgTries 

       Size        Obs        Min        Max       Mean         Sd 

        226        226  0.193E+01  0.169E+02  0.551E+01  0.246E+01 

   

  Summary of numerical variable: TimeCorr 

       Size        Obs        Min        Max       Mean         Sd 

        226        226  0.249E+01  0.942E+02  0.280E+02  0.185E+02 

   

  Summary of numerical variable: TimeSpent 

       Size        Obs        Min        Max       Mean         Sd 

        226        226  0.260E+01  0.942E+02  0.281E+02  0.185E+02 

   

  Summary of numerical variable: Discuss 

       Size        Obs        Min        Max       Mean         Sd 

        226        226  0.000E+00  0.140E+02  0.912E+00  0.201E+01 
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Result for 2-classes 
  Summary of response variable: Class2  
               class   frequency 
              Failed      62 
              Passed     164 
                  ------------- 
                   2     226 
   
  Options for tree construction 
  Learning sample 
  estimated priors are 
               Class     prior 
              Failed    0.27434 
              Passed    0.72566 
  Size and CV misclassification cost and SE of subtrees: 
  Tree   #Tnodes     Mean       SE(Mean) 
    1       26      0.1947     0.2634E-01 
    2*      16      0.1903     0.2611E-01 
    3       13      0.1947     0.2634E-01 
    4       12      0.2035     0.2678E-01 
    5        6      0.1947     0.2634E-01 
    6**      4      0.1947     0.2634E-01 
    7        3      0.2301     0.2800E-01 
    8        2      0.2434     0.2854E-01 
    9        1      0.2743     0.2968E-01 
   
CART 0-SE tree is marked with * 
CART SE-rule using CART SE is marked with ** 
 
use 10-fold CV sample pruning 
  SE-rule trees based on number of SEs = 1.00 
   
  subtree  # Terminal  complexity  current 
  number    nodes       value        cost 
     1        26        0.0000     0.0885 
     2        16        0.0022     0.1106 
     3        13        0.0029     0.1195 
     4        12        0.0044     0.1239 
     5         6        0.0052     0.1549 
     6         4        0.0111     0.1770 
     7         3        0.0177     0.1947 
     8         2        0.0354     0.2301 
     9         1        0.0442     0.2743 
   
 
Classification tree: 
   
      Node 1: TotCorr <= 156.9 
        Node 2: Failed 
      Node 1: TotCorr > 156.9 
        Node 3: TotCorr <= 168.8 
          Node 18: Discuss <= 1.279 
            Node 20: Failed 
          Node 18: Discuss > 1.279 
            Node 21: Passed 
        Node 3: TotCorr > 168.8 
          Node 19: Passed 
   
 
 
 
  Classification matrix based on learning sample 
              predicted class 
  actual class   Failed   Passed 
        Failed       35       27 
        Passed       13      151 
   
Classification matrix based on 10-fold CV 
              predicted class 
  actual class   Failed   Passed 
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        Failed       33       29 
        Passed       15      149 
  

Result for 3-classes 
  use 10-fold CV sample pruning 
  SE-rule trees based on number of SEs = 1.00 
   
  Size and CV misclassification cost and SE of subtrees: 
  Tree   #Tnodes     Mean       SE(Mean) 
    1       47      0.5354     0.3318E-01 
    2       30      0.5265     0.3321E-01 
    3       24      0.5354     0.3318E-01 
    4       10      0.4735     0.3321E-01 
    5*       9      0.4425     0.3304E-01 
    6        8      0.4513     0.3310E-01 
    7        6      0.4602     0.3315E-01 
    8**      4      0.4735     0.3321E-01 
    9        2      0.4823     0.3324E-01 
   10        1      0.5796     0.3283E-01 
   
  CART 0-SE tree is marked with * 
  CART SE-rule using CART SE is marked with ** 
 
 
  Following tree is based on ** 
   
  Structure of final tree 
     
  Node Left node Right node   Split variable   Predicted class 
    1        2         3        TotCorr 
    2  * terminal node *                         Low 
    3       26        27        1stGotCrr 
   26       28        29        TotCorr 
   28  * terminal node *                         Middle 
   29  * terminal node *                         High 
   27  * terminal node *                         Middle 
   
  Number of terminal nodes of final tree = 4 
  Total number of nodes of final tree = 7 
   
  Classification tree: 
   
      Node 1: TotCorr <= 165.5 
        Node 2: Low 
      Node 1: TotCorr > 165.5 
        Node 3: 1stGotCrr <= 117.5 
          Node 26: TotCorr <= 181.5 
            Node 28: Middle 
          Node 26: TotCorr > 181.5 
            Node 29: High 
        Node 3: 1stGotCrr > 117.5 
          Node 27: Middle 
   
  Classification matrix based on learning sample 
              predicted class 
  actual class     High      Low   Middle 
          High       34        4       31 
           Low        2       34       26 
        Middle       21       11       63 
   
  Classification matrix based on 10-fold CV 
              predicted class 
  actual class     High      Low   Middle 
          High       27       10       32 
           Low        4       37       21 
        Middle       25       15       55 
Bagging (Leave-one-out method)   
 
  estimated priors are 
               Class     prior 
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                High    0.30531 
                 Low    0.27434 
              Middle    0.42035 
  minimal node size: 2 
  use univariate split 
  use (biased) exhaustive search for variable and split selections 
  use the divergence famliy 
  with lambda value:   0.5000000     
   
   
  use 226-fold CV sample pruning 
  SE-rule trees based on number of SEs = 1.00 
   
  Size and CV misclassification cost and SE of subtrees: 
  Tree   #Tnodes     Mean       SE(Mean) 
    1       67      0.5354     0.3318E-01 
    2       61      0.5354     0.3318E-01 
    3       31      0.5177     0.3324E-01 
    4       24      0.5000     0.3326E-01 
    5*      10      0.4204     0.3283E-01 
    6        9      0.4425     0.3304E-01 
    7**      8      0.4469     0.3307E-01 
    8        6      0.5000     0.3326E-01 
    9        4      0.4956     0.3326E-01 
   10        2      0.4823     0.3324E-01 
   11        1      0.5796     0.3283E-01 
   
  CART 0-SE tree is marked with * 
  CART SE-rule using CART SE is marked with ** 
 
  Following tree is based on ** 
   
  Structure of final tree 
   
   
  Node Left node Right node   Split variable   Predicted class 
    1        2         3        TotCorr 
    2  * terminal node *                         Low 
    3       32        33        1stGotCrr 
   32       34        35        TotCorr 
   34       36        37        TotCorr 
   36  * terminal node *                         High 
   37  * terminal node *                         Middle 
   35       70        71        TimeCorr 
   70  * terminal node *                         High 
   71  * terminal node *                         Middle 
   33      104       105        TimeCorr 
  104  * terminal node *                         Middle 
  105      132       133        TotCorr 
  132  * terminal node *                         Low 
  133  * terminal node *                         Middle 
   
  Number of terminal nodes of final tree = 8 
  Total number of nodes of final tree = 15 
   
Number of terminal nodes of final tree = 10 
Total number of nodes of final tree = 19 
   
  Classification tree: 
   
      Node 1: TotCorr <= 165.5 
        Node 2: Low 
      Node 1: TotCorr > 165.5 
        Node 3: 1stGotCrr <= 117.5 
          Node 26: TotCorr <= 181.5 
            Node 28: TotCorr <= 169.5 
              Node 30: High 
            Node 28: TotCorr > 169.5 
              Node 31: Middle 
          Node 26: TotCorr > 181.5 
            Node 29: TimeCorr <= 52.44 
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              Node 56: High 
            Node 29: TimeCorr > 52.44 
              Node 57: Middle 
        Node 3: 1stGotCrr > 117.5 
          Node 27: TimeCorr <= 24.49 
            Node 80: Middle 
          Node 27: TimeCorr > 24.49 
            Node 81: TotCorr <= 180.5 
              Node 104: Low 
            Node 81: TotCorr > 180.5 
              Node 105: 1stGotCrr <= 130.0 
                Node 110: TimeCorr <= 27.16 
                  Node 112: Low 
                Node 110: TimeCorr > 27.16 
                  Node 113: Middle 
              Node 105: 1stGotCrr > 130.0 
                Node 111: High 
   
 
Classification matrix based on learning sample 
              predicted class 
  actual class     High      Low   Middle 
          High       38        5       26 
           Low        3       47       12 
        Middle       13       13       69 
   
   
Classification matrix based on 226-fold CV 
              predicted class 
  actual class     High      Low   Middle 
          High       31        9       29 
           Low        5       43       14 
        Middle       19       19       57 
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Result for 9-classes 
 
   Classification tree: 
  
      Node 1: TotCorr <= 104.0 
        Node 2: 0 
      Node 1: TotCorr > 104.0 
        Node 3: TotCorr <= 165.5 
          Node 4: 3 
        Node 3: TotCorr > 165.5 
          Node 5: TotCorr <= 181.5 
            Node 44: TimeCorr <= 2.565 
              Node 46: 8 
            Node 44: TimeCorr > 2.565 
              Node 47: TimeCorr <= 71.06 
                Node 48: AvgTries <= 3.145 
                  Node 50: 4 
                Node 48: AvgTries > 3.145 
                  Node 51: 1stGotCrr <= 77.00 
                    Node 56: 5 
                  Node 51: 1stGotCrr > 77.00 
                    Node 57: AvgTries <= 12.52 
                      Node 58: TimeCorr <= 40.50 
                        Node 60: 5 
                      Node 58: TimeCorr > 40.50 
                        Node 61: 6 
                    Node 57: AvgTries > 12.52 
                      Node 59: 3 
              Node 47: TimeCorr > 71.06 
                Node 49: 3 
          Node 5: TotCorr > 181.5 
            Node 45: AvgTries <= 2.630 
              Node 108: 4 
            Node 45: AvgTries > 2.630 
              Node 109: 1stGotCrr <= 111.5 
                Node 110: 1stGotCrr <= 55.50 
                  Node 112: 5 
                Node 110: 1stGotCrr > 55.50 
                  Node 113: TimeCorr <= 57.44 
                    Node 114: AvgTries <= 5.330 
                      Node 116: 6 
                    Node 114: AvgTries > 5.330 
                      Node 117: 8 
                  Node 113: TimeCorr > 57.44 
                    Node 115: 6 
              Node 109: 1stGotCrr > 111.5 
                Node 111: 6 
   
          predicted class 
  actual class        0        2        3        4        5        6        7        8 
             0        1        0        0        0        0        0        0        0 
             2        1        0        8        0        0        1        0        0 
             3        0        0       21        2        2        3        0        0 
             4        0        0        7        5        8        2        0        1 
             5        0        0        6        0       32        3        0        2 
             6        0        0        5        0       19       24        0        4 
             7        0        0        2        1       16       15        0        7 
             8        0        0        2        0        3        4        0       19 
  elapsed time: 386.25 seconds  (user: 386.14, system: 0.11) 
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CRUISE 

Here, some output results of CRUISE for 3-classes: CV misclassification cost and 
SE of subtrees: 
  Subtree      CV R(t)           CV SE       # Terminal Nodes 
 (largest)    0.549823         0.3313E-01          82 
      1       0.539823         0.3315E-01          70 
      2       0.544248         0.3313E-01          67 
      3       0.539823         0.3315E-01          59 
      4       0.526549         0.3321E-01          56 
      5       0.544248         0.3313E-01          41 
      6       0.553097         0.3307E-01          38 
      7       0.553097         0.3307E-01          23 
      8       0.561947         0.3300E-01          21 
      9       0.557522         0.3304E-01          15 
     10       0.535398         0.3318E-01           9 
     11       0.504425         0.3326E-01           8 
     12*      0.460177         0.3315E-01           6 
     13       0.504425         0.3326E-01           2 
     14       0.579646         0.3283E-01           1 

  * denotes 0-SE Tree 
  ** denotes given-SE Tree 
 * tree is same as ** tree 
  

  Following tree is based on ** 
  
  Splits of the Tree:  
  
   Node      Split variable 
     1  TotCorr 
       2  * terminal *   
       3  TotCorr 
         8  TotCorr 
           24  * terminal *   
           25  * terminal *   
         9  TotCorr 
           27  * terminal *   
           28  TimeCorr 
             84  * terminal *   
             85  * terminal *   

  
  Tree Structure:  
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   Node 1: TotCorr <=  163.156     
    Node 2: Terminal Node, predicted class = Low 
       Class label :   High    Low Middle 
       Class size  :      3     28     11 
  
  Node 1: TotCorr >  163.156     
    Node 3: TotCorr <=  171.059     
      Node 8: TotCorr <=  168.639     
        Node 24: Terminal Node, predicted class = Low 
           Class label :   High    Low Middle 
           Class size  :      2      7      1 
  
      Node 8: TotCorr >  168.639     
        Node 25: Terminal Node, predicted class = Middle 
           Class label :   High    Low Middle 
           Class size  :      3      4      9 
  
    Node 3: TotCorr >  171.059     
      Node 9: TotCorr <=  183.206     
        Node 27: Terminal Node, predicted class = Middle 
           Class label :   High    Low Middle 
           Class size  :     34     18     53 
  
      Node 9: TotCorr >  183.206     
        Node 28: ABS(TimeCorr -  35.4849    ) <=  19.1162     
          Node 84: Terminal Node, predicted class = High 
             Class label :   High    Low Middle 
             Class size  :     22      4     11 
  
        Node 28: ABS(TimeCorr -  35.4849    ) >  19.1162     
          Node 85: Terminal Node, predicted class = Middle 
             Class label :   High    Low Middle 
             Class size  :      5      1     10 

  
  
  Detailed Description of the Tree:  
  
   Nodes      No.     Subnode    Split     Split          Split 
   label    cases      label     stat.    variable        value 
       1     226          2        F      TotCorr      <=   163.16     
                          3                            <   infinity 
                      # obs   mean/mode of TotCorr 
            Class   High :  69      179.290     
            Class    Low :  62      158.903     
            Class Middle :  95      175.453     
  
       2      42        **** terminal, predicted class: Low 
                         # obs 
            Class   High :   3 
            Class    Low :  28 
            Class Middle :  11 
  
       3     184          8        F      TotCorr      <=   171.06     
                          9                            <   infinity 
                      # obs   mean/mode of TotCorr 
            Class   High :  66      180.576     
            Class    Low :  34      175.176     
            Class Middle :  84      179.226     
  
       8      26         24        F      TotCorr      <=   168.64     
                         25                            <   infinity 
                      # obs   mean/mode of TotCorr 
            Class   High :   5      167.600     
            Class    Low :  11      167.182     
            Class Middle :  10      169.800     
  
      24      10        **** terminal, predicted class: Low 
                         # obs 
            Class   High :   2 



 

203

            Class    Low :   7 
            Class Middle :   1 
  
      25      16        **** terminal, predicted class: Middle 
                         # obs 
            Class   High :   3 
            Class    Low :   4 
            Class Middle :   9 
  
       9     158         27        F      TotCorr      <=   183.21     
                         28                            <   infinity 
                      # obs   mean/mode of TotCorr 
            Class   High :  61      181.639     
            Class    Low :  23      179.000     
            Class Middle :  74      180.500     
  
      27     105        **** terminal, predicted class: Middle 
                         # obs 
            Class   High :  34 
            Class    Low :  18 
            Class Middle :  53 
  
      28      53         84  Levene   ABS(TimeCorr - 35.5    ) <=19.116     
                         85                            <   infinity 
                      # obs   mean/mode of TimeCorr 
            Class   High :  27      34.7652     
            Class    Low :   5      36.5700     
            Class Middle :  21      36.1519     
  
      84      37        **** terminal, predicted class: High 
                         # obs 
            Class   High :  22 
            Class    Low :   4 
            Class Middle :  11 
  
      85      16        **** terminal, predicted class: Middle 
                         # obs 
            Class   High :   5 
            Class    Low :   1 
            Class Middle :  10 
  
  
 Number of nodes in maximum tree        =     153 
 Number of nodes in final tree          =      11 
 Number of terminal nodes in final tree =       6 
  
  Classification Matrix :         Predicted class 
                                High    Low Middle 
  Actual class #obs   Prior --------------------- 
          High   69   0.305       22      5     42 
           Low   62   0.274        4     35     23 
        Middle   95   0.420       11     12     72 
  
  Total obs = 226,    # correct = 129 
  Resubstitution misclassification cost =   0.4292     
  S.E. of resubstitution misclassification cost =   0.3055E-01 
  
  Cross-validation error cost from pruning =   0.4602     
  S.E. of CV misclassification cost =   0.3315E-01 
  Elapsed system time in seconds:  5.54 
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